期刊文献+

基于NSCT和全变差模型的医学图像去噪(英文) 被引量:3

Medical Image Denoising Using Non-subsampled Contourlet Transform and Total Variation Model
下载PDF
导出
摘要 分析了非下采样Contourlet变换(nonsubsampled Contourlet transform,NSCT)和全变差模型的特点,提出将NSCT和全变差混合模型应用于医学图像去噪.首先,通过NSCT变换将含噪图像分解,运用Visu萎缩阈值将NSCT系数进行处理,得到初次去噪图像.然后,采用全变差模型对初次去噪图像进一步处理得到最终去噪图像.实验结果表明:该方法可以很好地保留图像细节,无论在客观上的峰值信噪比还是主观上的视觉效果都优于其他去噪方法. The characteristics of non-subsampled Contourlet transform (NSCT) and total variation (TV) modeling are analyzed. A mixed model of NSCT and TV is applied to medical image denoising in this paper. NSCT filter-based decomposition of noisy medical images is performed. An initial denoised image is produced using a Visu shrink threshold algorithm. The final denoised image is obtained by processing the initial denoised image with the TV model. Experimental results show that the image details are well preserved by using the proposed method. Both peak signal-to-noise ratio (PSNR) and visual quality are superior to some other denoising algorithms.
出处 《应用科学学报》 CAS CSCD 北大核心 2014年第5期481-485,共5页 Journal of Applied Sciences
基金 Project supported by the National Science Foundation of China(No.61103076) the Shanghai Municipal Natural Science Foundation(No.12ZR1410800) the Innovation Program of Shanghai Municipal Education Commission(No.13YZ016) the "863" National High Technology Research and Development Program of China(No.2013AA01A603)
关键词 非下采样CONTOURLET变换 全变差 医学图像去噪 峰值信噪比 non-subsampled Contourlet transform, total variation, medical image denoising, peak signal-to-noise ratio (PSNR)
  • 相关文献

参考文献11

  • 1CHANG S G, Yu B, VETTERLI M. An adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing, 2000: 15~2-1546. 被引量:1
  • 2Do M N, VETTERLI M. The Contourlet transform: an efficient directional multiresolutional image representation[J].IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106. 被引量:1
  • 3DA CAL, ZHOU J, Do M N. The nonsubsampled Contourlet transform: theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101. 被引量:1
  • 4ESLAMI R, RADHA H. Translational-invariant Contourlet transform and its application to image denoising [J]. IEEE Transactions on Image Processing, 2006, 15(11): 3362-3374. 被引量:1
  • 5Po D D Y, Do M N. Directional multiscale modeling of images using the Contourlet transform [J]. IEEE Transactions on Image Processing, 2006, 15(6): 1610-1620. 被引量:1
  • 6KANITHI Anil Kumar. Study of spatial and transform domain filters for efficient noise reduction [D]. National Institute of Technology, India, 2011. 被引量:1
  • 7STEIDL Gabriele, WEICKERT Joachim. Relations between soft wavelet shrinkage and total variation de noising [C]/ /LNCS 2449, 2002: 198-205. 被引量:1
  • 8Y AN Jie, Lu Wusheng. Image denoising by generalized total variation regularization and least squares fidelity [J]. Multidimensional Systems and Signal Processing, 2013. 被引量:1
  • 9OSHER S, SOLE A, VESE L. Image decomposition and restoration usin~ total variation minimization and the H-1 Norm [J].SIAM Journal of Multiscale Modeling and Simulation, 2003, 1(3): 350-369. 被引量:1
  • 10WANG Y, YANG J, YIN W, ZHANG Y. A new alternating minimization algorithm for total variation image reconstruction [J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272. 被引量:1

同被引文献34

  • 1张广智,印兴耀,吴国忱,张繁昌.一种提高KL变换速度和精度的方法[J].石油物探,1997,36(S1):112-115. 被引量:14
  • 2杨文采.非线性K-L滤波及其在反射地震资料处理中的应用[J].石油物探,1996,35(2):17-26. 被引量:13
  • 3Tony F. Chan,Jianhong Shen.Nontexture Inpainting by Curvature-Driven Diffusions[J].Journal of Visual Communication and Image Representation.2001(4) 被引量:4
  • 4Jinhua Yu,Yuanyuan Wang,Yuzhong Shen.Noise reduction and edge detection via kernel anisotropic diffusion[J]. Pattern Recognition Letters . 2008 (10) 被引量:2
  • 5Leonid I. Rudin,Stanley Osher,Emad Fatemi.Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena . 1992 被引量:2
  • 6Perona P,Malik J.Scale-space and edge detection usinganisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990 被引量:1
  • 7Selesnick, Ivan W.,Baraniuk, Richard G.,Kingsbury, Nick G.The dual-tree complex wavelet transform. IEEE Signal Processing Magazine . 2005 被引量:1
  • 8Thomas M Cover.Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers . 1965 被引量:1
  • 9Salinas, Harry M.,Fernández, Delia Cabrera.Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Transactions on Medical Imaging . 2007 被引量:1
  • 10CHEN D,LI Q.The use of complex contourlet transform on fusion scheme. Proceedings of World Academy of Science,Engineeringand Technology . 2005 被引量:1

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部