期刊文献+

基于BEMD和小波阈值的MRI医学图像去噪 被引量:8

MRI Medical Image Denoising Based on BEMD and Wavelet Thresholding
下载PDF
导出
摘要 针对核磁共振医学图像含有的混合噪声的特点,提出了一种基于2维经验模式分解(BEMD)和小波阈值去噪的新算法,即将图像分解到固有模态函数(IMF)域。然后采用小波阈值法对各固有模态函数成分进行去噪处理。在分析了小波硬阈值和软阈值去噪的特点之后,对小波阈值进行了改进,克服了传统小波阈值去噪的不足。实验结果表明该方法在有效去除噪声的同时,较好地保留了MRI图像的细节,有利于医学的诊断。 A new method which is based on bidimensional empirical mode decomposition (BEMD) and wavelet thresholding was proposed for the noise removal in medical image of magnetic resonance image(MRI). Namely the image was decomposed into the intrinsic mode function (IMF) domain. Then the wavelet thresholding was used to remove the noise in the IMF. After the characteristic of the wavelet hard thresholding and the wavelet soft thresholding was analyzed, an improved wavelet thresholding which overcomes the shortcoming of the custom wavelet thresholding for denoising was introduced. In addition to remove the noise in MRI image, the experimental results show that our method had preserved the details of MRI image. It was propitious to medical diagnoses.
作者 李峰 吕回
出处 《中国图象图形学报》 CSCD 北大核心 2009年第10期1972-1977,共6页 Journal of Image and Graphics
基金 湖南省自然科学基金项目(07JJ3120 09JJ3120) 湖南省高等学校科学研究重点项目(08A001)
关键词 核磁共振图像 2维经验模式分解 固有模态函数 小波阈值去噪 magnetic resonance image, bidimensional empirical mode decomposition, intrinsic mode function, wavelet thresholding denoising
  • 相关文献

参考文献12

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis [ A ]. In : Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences [ C ], London, Britain, 1998: 903-995. 被引量:1
  • 2Loh C H, Wu T C, Huang N E. Application of the empirical mode decomposition--Hilbert spectrum method to identify near-fauh ground motion characteristics and structural responses [ J]. Bulletin of the Seismological Society of America,2001, 91 (5) : 1339-1357. 被引量:1
  • 3Vidakovic B, Lozoya C B. On time-dependent wavelet denoising [ J]. IEEE Transactions on Signal Processing, 1998, 46(9) :2549-2551. 被引量:1
  • 4Xu Guan-lei,Wang Xiao-tong, Xu Xiao-gang. Neighborhood limited empirical mode decomposition and application in image processing [A]. In: Proceedings of the 4th International Conference on Image and Graphics[ C ], Washington, DC, USA, 2007 : 149-154. 被引量:1
  • 5Yue Huan-yin, Guo Hua-dong, Han Chun-ming, et al. A SAR interferogram filter based on the empirical mode decomposition method [ A ]. In: Proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium [ C ], Sydney, NSW, Australia,2001: 2061-2063. 被引量:1
  • 6Liu Zhang-xuan, Wang Hong-jian, Peng Si-long. Texture classification through directional empirical mode decomposition [ A ]. In: Proceedings of the 17th International Conference on Pattern Recognition [ C ], Washington DC, USA, 2004:803-806. 被引量:1
  • 7Nunes J C, Bouaoune Y, Delechelle E, et al. Image analysis by bidimensional empirical mode decomposition [ J]. Image and Vision Computing,2003,21 (12) : 1019-1026. 被引量:1
  • 8He Lu-lu, Wang Hong-yuan. Spatial-variant image filtering based on bidimensional empirical mode decomposition [ A ]. In: Proceedings of the 18th International Conference on Pattern Recognition [ C ], Washington, DC, USA, 2006,2: 1196-1199. 被引量:1
  • 9Zhao Jin-ping, Huang Da-ji. Mirror extending and circular spline function for empirical mode decomposition method [ J]. Journal of Zhejiang University (Science) , 2001, 2 ( 3 ) : 247- 252. 被引量:1
  • 10Damerval C, Meignen S, Perrier V. A fast algorithm for bidimensional EMD [ J ]. IEEE Signal Processing Letters, 2005,12 (10) : 701-704. 被引量:1

同被引文献51

  • 1王长龙,傅君眉,徐章遂,陈鹏,陈永利.天然气管道漏磁检测中的信号处理[J].天然气工业,2005,25(6):100-101. 被引量:8
  • 2沈滨,崔峰,彭思龙.二维EMD的纹理分析及图像瞬时频率估计[J].计算机辅助设计与图形学学报,2005,17(10):2345-2352. 被引量:25
  • 3N.E.HUANG.et aI.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis.Proc.R.Soc.Lond.A. 1998.454.903-995. 被引量:1
  • 4ANNA LINFERHED.Image compression based on empirical mode decomposition.Proceedings of SSBA symposium on image analysis [J].2004,SSBA(04):110-113. 被引量:1
  • 5CANNY J.A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679-698. 被引量:1
  • 6李牧,闫继红,李戈,赵杰.自适应Canny算子边缘检测技术[J].哈尔滨工程大学学报,2007,28(9):1002-1007. 被引量:88
  • 7Zitova B, Kautsky J, Peters G. Robust Detection of Significant Points in Multi Frame Images [J]. Pattern Recongnition Letters (S0167-8655), 1999, 20: 199-206. 被引量:1
  • 8LEE Jiann-Shu, SUN Yung-Nien, CHEN Chin-Hsing. Multi Scale Comer Detection by Using Wavelet Transform [J]. IEEE Transactions on Image Processing(S1057-7149), 1995, 4(1): 100-104. 被引量:1
  • 9Mokhtarian F, Suomela R. Curvature Scale Space Based Image Comer Detection [C]//European Signal Processing Conference, Rhodes, Greece, September8-11, 1998. Patras, Grece: Typorama, 1998: 2549-2552. 被引量:1
  • 10Harris C, Stephens M. A Combined Comer and Edge Detector [C] //Proceedings of the 4th Alvey Vision Conference, Manchester, England, August 31-September 2, 1998: 147-151. 被引量:1

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部