期刊文献+

一种基于全变差正则化与小波包变换的图像去噪算法 被引量:5

Image Denoising Algorithm Based on Wavelet Packet Transform and Total Variation Model
下载PDF
导出
摘要 提出一种基于全变差(TV)模型和小波包变换的图像去噪算法,并给出了针对该模型的一种改进正则化参数选取方法,改善了全变差模型去噪中出现的块效应问题,同时保留了图像中的边缘信息.数值实验表明,用所给算法去噪可得到较高的峰值信噪比和较好的视觉效果. Authors proposed an effcient image denoising method based on the combination of wavelet packet transform with total variation model and presented how to select the regularization parameter in this model.The combination of wavelet packet transform with total variation model helps to alleviate staircase effect efficiently and preserve sharp discontinuities in images as well.The numerical experimental results show that the new method is effective in removing Gaussian noise and keep the detail of the image well.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第1期81-85,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10926157) 吉林大学基本科研业务费专项基金(批准号:2012BS043)
关键词 图像处理 图像去噪 全变差模型 小波包变换 image processing image denoising total variation model wavelet packet transform
  • 相关文献

参考文献12

  • 1Mallat S G. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. 被引量:1
  • 2Donoho D L. De-noising by Soft-Thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3) : 613-627. 被引量:1
  • 3Ramchandran K, Vetterli M. Best Wavelet Packet Bases in a Rate-Distortion Sense[J]. IEEE Transactions on Image Processing, 1993, 2(2): 160-175. 被引量:1
  • 4Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Physica D, 1992, 60(1/2/3/4) : 259-268. 被引量:1
  • 5Marquina A, Osher S J. Image Super-Resolution by TV-Regularization and Bregman Iteration [J]. J Sci Comput, 2008, 37(3): 367-382. 被引量:1
  • 6Chan T F, ZHOU Hao-min. Total Variation Wavelet Thresholding [J]. Journal of Scientific Computing, 2007, 32(2) : 315-341. 被引量:1
  • 7MA Jian-wei, Fenn M. Combined Complex Ridgelet Shrinkage and Total Variation Minimization[J]. SIAM J Sci Comput, 2006, 28(3): 984-1000. 被引量:1
  • 8TANG Gang, MA Jian-wei. Application of Total-Variation-Based Curvelet Shrinkage for Three-Dimensional Seismic Data Denoising [J]. IEEE Geosci Remote Sensing Lett, 2011, 8(1) : 103-107. 被引量:1
  • 9XIAO Liang, HUANG Li-li, Roysam B. Image Variational Denoising Using Gradient Fidelity on Curvelet Shrinkage[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010: 398-410. 被引量:1
  • 10Krommweh J, MA Jian-wei. Tetrolet Shrinkage with Anisotropic Total Variation Minimization for Image Approximation [J]. Signal Processing, 2010, 90(8): 2529-2539. 被引量:1

同被引文献33

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部