期刊文献+

模糊C均值聚类在蓄电池SOC预测中的应用 被引量:4

Application of Fuzzy Clustering Method in Predicting Batteries' SOC
下载PDF
导出
摘要 针对铅酸蓄电池数学模型难以建立以及荷电状态精确预测问题,本文提出了一种利用模糊C-均值聚类算法对蓄电池SOC控制器参数及结构进行辨识的建模方法。通过对蓄电池电动势、内阻等实时数据进行聚类分析,能够有效地实现输入空间划分并能够有针对性地生成模糊控制规则,在此基础上构建了完整的荷电状态预测控制器。通过铅酸蓄电池放电实验验证了该预测方法的有效性。 Since it is difficult to establish a mathematical model of lead-acid battery and to predict the accuracy of SOC, the fuzzy C-means (FCM) for recognizing the parameters and structure of battery SOC controller was presented. By clustering the battery electromotive force and internal resistance were collected in real time, this controller is effective to partition the space and construct the fuzzy control rules and it also constructs a complete state of charge prediction controller based on it. The battery discharge test verifies the effectiveness of the prediction method finally.
作者 周奇 罗培
出处 《电源学报》 CSCD 2014年第4期99-104,共6页 Journal of Power Supply
关键词 模糊C-均值聚类 铅酸蓄电池 控制规则 荷电状态 fuzzy C-means lead-acid battery control rule state of charge
  • 相关文献

参考文献7

二级参考文献36

共引文献159

同被引文献44

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部