期刊文献+

一种蚁群聚类算法 被引量:6

Ant Colony Clustering Algorithm
下载PDF
导出
摘要 提出一种蚁群优化聚类算法,用于将N个对象优化分成K个不同的划分;该算法采用全局信息素更新策略和启发式信息构造聚类解,通过提高信息素在求解过程中的利用率加快了聚类速度,通过使用启发式信息提高了算法的搜索效率,使用均匀交叉算子改善了聚类解的质量;在几个模拟的数据集和UCI机器学习数据集上测试该算法的性能,并与其它几个启发式算法进行比较;计算结果表明该算法具有更好的解的质量,更少的函数估计次数和更少的运行时间。 This paper presents an ant colony clustering algorithm for optimally clustering N objects into K clusters. The algorithm employs the global pheromone updating and the heuristic information to construct clustering solutions. The rate of clustering is accelerated by increasing the utilization of the pheromone. The heuristic information is applied to improve the efficiency of the algorithm. Uniform crossover operator is used to further improve solutions discovered by ants. This algorithm has been implemented and tested on several simulated datasets and UCI machine learning datasets. The performance of this algorithm is compared with other popular heuristic methods. Our computational simulations reveal very encouraging results in terms of the quality of solution found, the average number of function evaluations and the processing time required.
出处 《计算机测量与控制》 CSCD 2007年第11期1590-1592,1596,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(50138010)
关键词 蚁群算法 聚类 优化 均匀交叉 ant colony algorithm clustering optimization uniform crossover
  • 相关文献

参考文献3

二级参考文献14

共引文献87

同被引文献46

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 3朱大奇,陈尔奎.旋转机械故障诊断的量子神经网络算法[J].中国电机工程学报,2006,26(1):132-136. 被引量:15
  • 4段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究[J].计算机仿真,2007,24(3):169-172. 被引量:20
  • 5Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies [A]. Proceeding of European Conference of Artificial Life ECAL91 [C]. F. Varela and P. Bourgine (Eds), Paris, France: Elsevier Publishing. 1991, 134--144. 被引量:1
  • 6Dorigo M , Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Trans on Systems, Man, and Cybernetics--part B, 1996, 26 (1): 29-41. 被引量:1
  • 7Moravec H, Elfes A. High resolution maps from wide angle sonar [A]. Proc of IEEE International Conference on Robotics and Automation [C]. New Jersey: IEEE Press, 1985: 116--121. 被引量:1
  • 8HAN Jiawei, KAMBER Micheline. Data mining: concepts and techniques [ M]. San Fransisco: Morgan Kaufmann Publishers, 2001 : 383-466. 被引量:1
  • 9WANG Xin, HAMILTON H J. A comparative study of two density-based spatial clustering algorithms for very large datasets [ M ]. Berlin: Springer-Vedag GmbH, 2005, 3501 : 120-132. 被引量:1
  • 10SANDER Joorg, ESTER Martin, KRIEGEL Hanspeter, et al. Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications [ J ]. Springer Netherlands, 1998, 2(2) :169-194. 被引量:1

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部