期刊文献+

应用Kalman滤波法估计铅酸蓄电池SOC 被引量:16

Kalman filter for estimating state-of-charge of VRLA batteries
下载PDF
导出
摘要 在蓄电池的充/放电过程中,正确估计其剩余容量,对充/放电控制器采取下一步的动作有着非常重要的指导作用。针对蓄电池充/放电的实际情况,在分析了传统SOC估计方法不足的基础上,引入Kalman滤波法作为蓄电池荷电状态(SOC)估计的主要算法。本文采用Randles等效电路模型,详细给出了Kalman滤波法估计SOC的算法推导,通过Matlab软件仿真验证了运用Kalman滤波法可以有效跟踪蓄电池SOC的变化,并且控制精度优于传统方法。 During the charge or discharge of battery, accurate estimation of residucal capacity is very im- portant to the controller which will take the next action. In consideration of actual charge /discharge of lead-acid battery and deficiencies of traditional methods, a new approach based on the well-known Kalman Filter is introduced. This paper adopts Randles circuit, and describes in detail the deduction to estimate SOC of lead-aeid battery by using Kalman filtering algorithm. By using Matlab software, it can be proved that this method can track real-time prediction of SOC, which is superior to traditional measurements in terms of control accuracy.
出处 《蓄电池》 北大核心 2010年第1期19-23,共5页 Chinese LABAT Man
基金 国家863计划资助项目(2008AA052421)
关键词 铅酸蓄电池 荷电状态 卡尔曼滤波法 Key words: lead acid hattery state of charge Kahnan Fiher
  • 相关文献

参考文献7

二级参考文献20

共引文献192

同被引文献159

引证文献16

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部