期刊文献+

角位移增大连杆轴向预压缩驱动器静、动态特性仿真分析 被引量:4

Static and Dynamic Simulation and Analysis on PBP Actuator with a Connecting rod Mechanism to Magnify Output Angular Displacement
下载PDF
导出
摘要 为了进一步增大压电双晶片驱动器的输出角位移,基于轴向预压缩增大压电双晶片输出转角和力矩的方法,提出一种带有连杆机构的压电双晶片驱动器。对驱动器建立了端部带有扭簧的静力学数值模型,以及端部带有微小舵面的刚柔耦合拉格朗日动力学方程及有限元模型。所得的数值结果和有限元结果总体符合程度较好,静力学结果表明:带有连杆机构的轴向预压缩(PBP)驱动器较原PBP驱动器输出角位移增大了4倍以上,最大输出转角可达到26.3°,而输出转矩随之缩小。动力学结果给出了驱动器机构内部能量的传输及分配特性,以文中舵面作为驱动对象,驱动器平均输出角速度达到2 000°/s,控制带宽达到30 Hz,明显优于普通伺服舵机。该角位移增大PBP驱动器的设计和仿真研究可为以大位移、小输出力矩、高控制带宽为特征的微小型飞行器舵机的研制提供理论参考依据。 In order to magnify the output angular displacement of piezoelectric bimorph further, a bimorph actuator with a connecting rod mechanism is angle and torque of piezoelectric bimo model with a torsion spring on its end rp is proposed based on the method of increasing the output h by post-buckled pre-compression (PBP). A static numerical founded. And the rigid-flexible coupling Lagrange equation dynamic model and FEM model both with small rudder are also established. The results indicate a better coincidence between the numerical and FEM models. Statics results show that connection rod mechanism proposed can produce an output angular displacement which is 4 times bigger than that produced by the o-riginal PBP driver, and the biggest output angular reaches 26.3°, reducing the output torque. The dynamics results show the transfer and distribution of the interior energy of actuator mechanism. Taking the small rudder in this paper as a driving object, the the control bandwidth reaches 30 Hz, which are average output angular velocity reaches 2 000°/s, and much better than those of the ordinary servo actuator Therefore, the design and simulation of the proposed actuator can provide the theoretical basis to the development of micro-flight rudder characterized by large displacement, small output torque and high control bandwidth
出处 《兵工学报》 EI CAS CSCD 北大核心 2014年第8期1258-1266,共9页 Acta Armamentarii
关键词 航空器结构与设计 预压缩压电双晶片 驱动器 增大角位移 刚柔耦合 拉格朗日方程 aircraft structure and design pre-compression piezoelectric bimorph actuator output angular displacement rigid-flexible coupling Lagrange equation
  • 相关文献

参考文献13

  • 1Wlezien R W,Horner G C,McGowan A R,et al.The aircraft morphing program[C]∥The 39th Structures,Structural Dynamics,and Materials Conference and Exhibit.Long Beach,CA:AIAA,1998:1927. 被引量:1
  • 2Loverich J J.Development of a new high specific power piezoelectric actuator[D].Pennsylvania,US: the Pennsylvania State University,2004. 被引量:1
  • 3于志远,姚晓先,戴闰志,吴松平.压电舵机微位移放大机构设计[J].兵工学报,2009,30(12):1653-1657. 被引量:7
  • 4Lesieutre G,Davis C.Can a coupling coefficient of a piezoelectric device be higher than those of its active material?[J].Journal of Intelligent Material Systems and Structures,1997,8(10): 859-867. 被引量:1
  • 5Schwartz R W,Narayanan M.Electroactive apparatus and methods: US,US6847155B2[P].2002-06-07. 被引量:1
  • 6Barrett R,McMurtry R,Vos R,et al.Post-buckled precompressed (PBP) elements: a new class of light control actuatorsenhancing high speed autonomous VTOL MAVS[C]∥The 12th Annual Proceedings of SPIE International Symposium on Smart Structures and Materials.San Diego,CA: SPIE,2005: 111-122. 被引量:1
  • 7Barrett R.Convertible vertical take-off and landing miniature aerial vehicle: US,6502787 [P].2002-02-22. 被引量:1
  • 8Vos R,DeBreuker R,Barrett R,et al.Morphing wing flight control via post-buckled precompressed piezoelectric actuators [J].Journal of Aircraft,2007,44(4):1060-1068. 被引量:1
  • 9Vos R,Barrett R.Post-buckled pre-compressed techniques in adaptive aero-structure: an overview[J].Journal of Mechanical Design,2010,132: 031004-1-031004-11. 被引量:1
  • 10Giannopoulos G,Monreal J,Vantomme J.Snap-through buckling behavior of piezoelectric bimorph beams: I.analytical and numerical modeling[J].Smart Materials and Structures,2007,16(4): 1148-1157. 被引量:1

二级参考文献19

  • 1Ruan X, Cheeseman B A, Safari E A A. Design optimization of dome actuators [ J ]. IEEE Transaction on Ultasonic, Ferroelectrics and Frequency Control, 1999, 46(6) : 1489 - 1496. 被引量:1
  • 2Dogan A, Xu Q C, Onitsuka E A K. High displacement ceramicmetal composite actuator[J]. Ferroelectrics, 1994, 156: 1- 6. 被引量:1
  • 3Wise S A. Displacement properties of rainbow and thunder piezoelectric actuator[J]. Sensors and Actuators, 1998, A69: 33- 38. 被引量:1
  • 4Paros J M, Weisbord L. How to design flexure hinges[J]. Machine Design, 1965, 37(27): 151 - 157. 被引量:1
  • 5Smith S T, Badam I V G, Dale J S. Elliptical flexure hinges[J]. Review of Scientific Instruments, 1997, 68: 1474- 1483. 被引量:1
  • 6Lobontiu N, Paine J S N, Garcia E, et al. Corner-filleted flexure hinges[J]. ASME Trans J Mech Des, 2001, 123: 346- 352. 被引量:1
  • 7Lobontiu N, Gareia E, Goldfarb M, et al. Stiffness characterization of corner-filled flexure hinges[J]. Review of Scientific Instruments, 2004, 75: 4896-5006. 被引量:1
  • 8Lobontiu N, Jeffrey S N, O'Malley E, et al. Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations [J ]. Precision Engineering, 2002, 26: 183- 192. 被引量:1
  • 9Xu Wei, Tim King. Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations [ J ]. Precision Engineering, 1996, 19: 4-10. 被引量:1
  • 10RW Wlezien. The aircraft morphing program[A].Long Beach,USA,1998. 被引量:1

共引文献6

同被引文献24

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部