摘要
Alcohol is the most frequently-used addictive drug. However, the mechanism by which its consumption leads to addiction remains largely elusive. Given the conservation of behavioral reactions to alcohol, Caenorhabitis elegans (C. elegans) has been effectively used as a model system to investigate the relevant molecular targets and pathways mediating these responses. In this article, we review the roles of BK channels (also called SLO-1), the lipid microenvironment, receptors, the synaptic machinery, and neurotransmitters in both the acute and chronic effects of alcohol. We provide an overview of the genes and mechanisms involved in alcoholism- related behaviors in C. elegans.
Alcohol is the most frequently-used addictive drug. However, the mechanism by which its consumption leads to addiction remains largely elusive. Given the conservation of behavioral reactions to alcohol, Caenorhabitis elegans (C. elegans) has been effectively used as a model system to investigate the relevant molecular targets and pathways mediating these responses. In this article, we review the roles of BK channels (also called SLO-1), the lipid microenvironment, receptors, the synaptic machinery, and neurotransmitters in both the acute and chronic effects of alcohol. We provide an overview of the genes and mechanisms involved in alcoholism- related behaviors in C. elegans.
基金
supported by grants from the National Natural Science Foundation of China (31371489)
the Shanghai Pujiang Program (13PJ1408100)
the 1000 Talents Youth Program