期刊文献+

改进的基于用户数据的协同过滤推荐方法 被引量:2

IMPROVED COLLABORATIVE FILTERING RECOMMENDATION METHOD BASED ON USER DATA
下载PDF
导出
摘要 协同过滤算法中最重要的一步是寻找相似用户,但用户评分数据的稀疏以及不诚实用户等问题,使仅仅依赖用户评分数据的传统协同过滤方法寻找的相似用户不够准确。在改进的基于用户数据的推荐算法中,用到用户评分数据和用户信息两种用户数据,通过对用户信息进行量化,得到用户信息矩阵。分别使用用户商品评分矩阵和用户信息矩阵来计算用户相似值,通过综合两种相似值来计算得到相似用户,并且通过加权来修正不诚实用户问题,通过筛选推荐用户来解决用户数据稀疏性问题。实验结果表明该方法能够有效地提高推荐精度。 In collaborative filtering algorithm,looking for similar users is the most important step. But due to the problems such as the sparseness of user rating data and the dishonest users,traditional collaborative filtering methods which rely only on users rating data fail in looking for the users with enough similarity. In the improved user data-based recommendation algorithm,two kinds of data are acquired,the user rating data and the user information data. Through quantifying the user information we get user information matrix,then we calculate the user similarity values by using user commodity rating matrix and user information matrix respectively,we also get similar users through integrating these two kinds of similarity values,correct the dishonest user problem by weighting,and solve the user rating data sparseness problem through screening the recommendation users. Experimental results show that this method can effectively improve the accuracy of recommendation.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第8期245-248,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61262025 61262024) 云南省应用基础研究计划面上项目(2012FB118) 云南省教育厅科学研究基金项目(2012Y257) 云南省软件工程重点实验室开放基金项目(2011SE09)
关键词 协同过滤 用户信息 不诚实用户 稀疏性 Collaborative filtering User information Dishonest user Sparseness
  • 相关文献

参考文献9

二级参考文献114

  • 1秦国,杜小勇.基于用户层次信息的协同推荐算法[J].计算机科学,2004,31(10):138-140. 被引量:15
  • 2熊馨,王卫平,叶跃祥.基于概念分层的个性化推荐算法[J].计算机应用,2005,25(5):1006-1008. 被引量:17
  • 3彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 4Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 6Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 7Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 8Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 9Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1

共引文献1162

同被引文献17

  • 1周宏明,薛伟,詹永照,李峰平,付培红.面向产品配置的相似度计算模型及实现方法[J].中国机械工程,2007,18(13):1531-1535. 被引量:13
  • 2Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C ]//Pro- ceedings of the 1994 ACM conference on computer supported cooperative work. [ s. 1. ] :ACM, 1994 : 175-186. 被引量:1
  • 3Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the 10th international conference on World Wide Web. [ s. 1. ] :ACM,2001:285-295. 被引量:1
  • 4Adomavicius G, Tuzhilin A. Towards the next generation of recommender systems : a survey of the state- of - the - art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005,17 (6) :734-749. 被引量:1
  • 5Billsus D, Pazzani M. Learning collaborative information filters [ C ]//Proceedings of the 15th international conference on ma- chine learning. [ s. 1. ] : [ s. n. ], 1998. 被引量:1
  • 6Zhou K. Combining item rating similarity and item classifica- tion similarity for better recommendation quality [ J ]. Ad- vanced Materials Research,2012,461:289-292. 被引量:1
  • 7Miller B N, Albert I, Lam S K, et al. MovieLens unplugged:ex- periences with occasionally connected recommender system [ C]//Proceedings of the 8th international conference on in- teUigent user interfaces. New York : ACM ,2003:263-266. 被引量:1
  • 8许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 9黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 10嵇晓声,刘宴兵,罗来明.协同过滤中基于用户兴趣度的相似性度量方法[J].计算机应用,2010,30(10):2618-2620. 被引量:27

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部