期刊文献+

基于单分类的协同过滤推荐算法 被引量:1

Collaborative Filtering Recommendation Algorithm Based on Single-class Classification
下载PDF
导出
摘要 随着电子商务推荐系统中用户和商品数目的增加,用户商品评分数据集的稀疏性会导致协同过滤推荐算法的推荐质量下降。针对该问题,提出一种基于单分类的协同过滤推荐算法。根据目标用户评分商品对应的类别,选择候选最近邻居集,采用单分类预测用户对商品的评分,以减小目标用户与候选最近邻居所形成的数据集稀疏性。实验结果表明,该算法能提高寻找最近邻居的准确性,从而改善协同过滤的推荐质量。 With the increasing number of users and goods in E-commerce recommender systems,the data set sparse of user goods rating reduces the quality recommendation of collaborative filtering recommendation algorithm.To solve this problem,this paper proposes a collaborateive filtering recommendation algorithms based on single-class classificatin.It chooses candidate nearest neighbor set which depending on the target user rating goods corresponding to category and uses single-class classification to predict the values of the user rating.It can reduce the sparse of data set which is formed by the target user and the candidate nearest.Experimental results show that the algorithm is able to increase the accuracy of searching nearest neighbor set,resulting in improving recommendation quality of the collaborative filtering.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第19期59-61,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60675030 60875029)
关键词 推荐系统 协同过滤 数据稀疏性 单分类 平均绝对偏差 recommendation system collaborative filtering data sparse single-class classification Mean Absolute Error(MAE)
  • 相关文献

参考文献5

二级参考文献13

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 2Goldberg D, Nichols D. Using Collaborative Filtering to Weave an Information Tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70. 被引量:1
  • 3Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]//Proc. of the 10th International World Wide Web Conference. Hong Kong, China: [s. n.], 2001. 被引量:1
  • 4Jin Xin, Zhou Yanzan, Mobasher B. A Unified Approach to Personalization Based on Probabilistic Latent Semantic Models of Web Usage Andcontent[C]//Proc. of SWP'04. San Jose, USA: [s. n.], 2004. 被引量:1
  • 5Herlocker J, Konstan J, Riedl J. Explaining CoUab-rative Filtering Recommendations[C]//Proc. of ACM Conf. on Computer Supported Cooperative Work. [S. l.]: ACM Press, 2000. 被引量:1
  • 6Park H S, Yoo J, Cho S B. A Context-aware Music Recommendation System Using Fuzzy Bayesian Networks with Utility Theory[C]// Proc. of FSKD'06. Xi'an, China: [s. n.], 2006. 被引量:1
  • 7Velasquez J D, Palade V. Building a Knowledge Base for Imple- menting a Web Based Computerized Recommendation System[J]. International Journal on Artificial Intelligence Tools, 2007, 16(5): 793-828. 被引量:1
  • 8Mobasher B, Dai Honghua, Luo Tao. Improving the Effectiveness of Collaborative Filtering on Anonymous Web Usage Data[C]//Proc. oflJCAI'01. Seattle, WA, USA: [s. n.], 2001. 被引量:1
  • 9lguchi M, Goto S. Anonymous P2P Web Browse History Sharing for Web Page Recommendation[J]. IEICE Trans. on Information & Systems, 2007, E90-D(9): 1343-1353. 被引量:1
  • 10Pogacnik M, Tasic J, Meza M, et al. Personal Content Recommender Based on a Hierarchical User Model for the Selection of TV Programmes[J]. User Modelling and User Adapted Interaction, 2005 15(5): 425-457. 被引量:1

共引文献5

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部