期刊文献+

改进的面向数据稀疏的协同过滤推荐算法 被引量:15

An Improved Collaborative Filtering Recommendation Algorithm for Data Sparsity
下载PDF
导出
摘要 用户相似性和最近邻集合是协同过滤算法中最重要的两个步骤。传统的协同过滤算法依靠用户评分计算用户相似性并寻找K个邻居作为最近邻的方法为用户产生推荐,但是在数据稀疏的情况下,仅仅依靠用户评分使得推荐效果不准确。针对以上问题,文中提出一种改进的面向数据稀疏的协同过滤推荐算法。该方法引入用户属性相似性和用户兴趣度相似性,并结合传统的用户评分相似性计算用户间的相似度,通过多次实验调整三者的权重,并且采用动态选取邻居集合的方法确定用户的最近邻,从而为用户推荐最合适的项目,增强了方法实用性,以此来缓解用户数据稀疏性问题。实验结果表明,文中方法能够充分利用用户的各类数据信息,提高了预测评分的准确性及推荐质量。 User similarity and nearest neighbor set is two important steps in acollaborative filtering algorithm. The traditional Collaborative Filtering (CF) computes user similarity only relying on user rating and finds K neighbors as nearest neighbor to produce recommendation for users,but in the case of sparse data,only relying on user rating calculation makes the recommendation effect inaccurate. To solve the problems, an improved collaborative f'dtering recommendation algorithm for data sparsity is proposed, which introduces the similarity of user attributes and user interest,combined with traditional user rating similarity to compute similarity between users. The weights of three is adjusted through several experiments,and the dynamic method is used to search the user's nearest neighbor to recommend suitable iterns for users,in order to alleviate user data sparsity problem. Experimental results show that this method can make full use of all kinds of users' data information .improving the accuracy of predicted ratings and ouality of recommendation.
作者 高倩 何聚厚
出处 《计算机技术与发展》 2016年第3期63-66,共4页 Computer Technology and Development
基金 中央高校基本科研业务费专项资金资助项目(GK201002028 GK201101001) 陕西师范大学学习科学交叉学科培育计划资助项目
关键词 用户相似性 属性 兴趣 动态 数据稀疏性 user similarity attribute interest dynamic data sparsity
  • 相关文献

参考文献13

  • 1桑治平,何聚厚.基于Hadoop的多特征协同过滤算法研究[J].计算机应用研究,2014,31(12):3621-3624. 被引量:1
  • 2Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C ]//Pro- ceedings of the 1994 ACM conference on computer supported cooperative work. [ s. 1. ] :ACM, 1994 : 175-186. 被引量:1
  • 3Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the 10th international conference on World Wide Web. [ s. 1. ] :ACM,2001:285-295. 被引量:1
  • 4Adomavicius G, Tuzhilin A. Towards the next generation of recommender systems : a survey of the state- of - the - art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005,17 (6) :734-749. 被引量:1
  • 5嵇晓声,刘宴兵,罗来明.协同过滤中基于用户兴趣度的相似性度量方法[J].计算机应用,2010,30(10):2618-2620. 被引量:27
  • 6Billsus D, Pazzani M. Learning collaborative information filters [ C ]//Proceedings of the 15th international conference on ma- chine learning. [ s. 1. ] : [ s. n. ], 1998. 被引量:1
  • 7Zhou K. Combining item rating similarity and item classifica- tion similarity for better recommendation quality [ J ]. Ad- vanced Materials Research,2012,461:289-292. 被引量:1
  • 8邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:557
  • 9Miller B N, Albert I, Lam S K, et al. MovieLens unplugged:ex- periences with occasionally connected recommender system [ C]//Proceedings of the 8th international conference on in- teUigent user interfaces. New York : ACM ,2003:263-266. 被引量:1
  • 10刘聪,张璇,王黎霞,赵倩,杨帅.改进的基于用户数据的协同过滤推荐方法[J].计算机应用与软件,2014,31(8):245-248. 被引量:2

二级参考文献135

  • 1彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 4Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 5Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 6Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 7Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 8Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 9Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 10Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. 被引量:1

共引文献1221

同被引文献85

引证文献15

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部