期刊文献+

基于DM8168的遗留物体检测算法设计 被引量:1

Design of abandoned object detection algorithm based on DM8168
下载PDF
导出
摘要 针对智能监控中遗留物体检测算法存在物体之间的遮挡和将静止的人检测为遗留物造成的虚警问题,为了达到实际应用中低功耗、实时和系统稳定性的要求,设计了一种基于达芬奇DM8168平台的遗留物检测方案。该方案使用双重背景方法检测出由运动变成静止的目标,同时结合证据累加的方式解决了运动目标遮挡静止目标造成的虚警问题,并采用支持向量机分类器对静止的目标分为人和遗留物体,避免了将静止的人检测为遗留物的问题。实验结果验证了该算法可以达到预期的效果。 To solve the problems of blocking and false alarm caused by regarding the still people as remnants during aban-doned objects detection,and satisfy the requirements of low power consumption,real time and stability in practical application, an abandoned object detection scheme based on DM8168 was designed. In the approach,dual-background is used to detect the still objects coming from moving objects. It also solve the false alarm problem caused by the phenomenon that the moving objects block out the still objects in combination with evidence accumulating mode. Moreover,the SVM classifier is used to distinguish between people and abandoned objects to avoid the problem that the still people are regarded as abandoned objects. The experi-mental results show that the algorithm can achieve the desired effect.
作者 李新文 张璐
出处 《现代电子技术》 2014年第15期113-116,共4页 Modern Electronics Technique
基金 国家"863"项目(2012AA112401) 青年英才计划项目(YETP1437)
关键词 DM8168 遗留物体检测 双背景 支持向量机 DM8168 abandoned object detection dual background SVM
  • 相关文献

参考文献10

二级参考文献39

  • 1张凯.视频运动检测算法的研究和分析[J].辽宁工学院学报,2007,27(1):26-28. 被引量:8
  • 2李全民,张运楚.自适应混合高斯背景模型的改进[J].计算机应用,2007,27(8):2014-2017. 被引量:21
  • 3M Bhargava, C C Chen, M S yoo, J K Aggarwal. Detection of object abandonment using temporal logic [ J]. Machine Vision and Applications, 2009,20(5) :271-281. 被引量:1
  • 4C Stauffer, W E L Grimson. Learning Patterns of Activity using Real-time Tracking [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22( 8 ) : 747-757. 被引量:1
  • 5H Liao, J Chang, L Chen. A Localized Approach to Abandoned Luggage Detection with Foreground-Mask Sampling[ C ]. 2008 5th IEEE Int. Conference on AVSS, Santa Fe, New Mexico, USA : IEEE Press, 2008. 132-139. 被引量:1
  • 6C Sacehi, C Regazzoni, G Gera, G Foresti. Use of neural networks for behaviour understanding in railway transport monitoring applications[ C ]. Proceedings of International Conference on Image Processing. Thessaloniki, Greece, 2001 :IEEE Press, 2001,1:541 - 544. 被引量:1
  • 7C Sacchi, C Regazzoni, G Vernazza. A Neural Network-Based Image Processing System for Detection of Vandal Acts in Unmanned Railway Environments [ C ]. 11 th International Conference on Image Analysis and Processing, Los Alamitos, Calif: IEEE Computer Society, 2001. 0529-0529. 被引量:1
  • 8F Lu, X Song, B Wu, V K Singh, R Nevatia. Left-Luggage Detection using Bayesian Inference[ C]. Pro. 9th IEEE Int. Workshop on PETS. New York,USA:IEEEPress, 2006.83-90. 被引量:1
  • 9A Singh, S Sawan, M Hanmandlu, V K Madasu, B C Lovell. An abandoned object detection system based on dual background segmentation [ C ]. 2009 6th IEEE Int. Conference on AVSS. Los Alamitos, Calif: IEEE Computer Society, 2009. 352-357. 被引量:1
  • 10F Porikli, Y Ivanov, T Haga, Robust Abandoned Object Detection Using Dual Foregrounds[ J]. Eurasip Journal on Advances in Signal Processing, vol. 2008, 2008,(30) :1-10. 被引量:1

共引文献10

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部