期刊文献+

遗失目标的实时检测算法 被引量:2

A Real-time Method for Detecting Abandoned Object
下载PDF
导出
摘要 针对视频安全监控问题,提出一种实时的遗失目标检测算法。首先,帧间差分用于获取像素级运动特性,并构造双重背景用于检测双重前景。而后,将像素级特性及双重前景综合以维持双重背景的更新。最后,通过累加证据图像来处理实际应用中的虚警和遮挡问题并证实遗失目标。在不同视频序列下的实验表明该算法能够有效地从嘈杂的场景中检测出遗失目标。此外,对于352×288的序列而言,该算法的运行速度达到约54帧/s,能够满足实时的监控任务需求。 To solve the problem of video-based security surveillance, a real-time method for abandoned object detection is proposed. First, frame-to-frame difference is used to obtain the pixel-wise properties of motion, and two backgrounds are constructed to detect dual foregrounds. Then, the pixel-wise properties and both foregrounds are integrated to maintain the dual backgrounds. Since the false alarms and occlusions necessarily occur and degrade the detection performance in practical applications, an evidence image is aggregated to validate the abandoned object. Experiments on several different video sequences demonstrate that the proposed method is effective in detecting abandoned objects from cluttered scenes. In addition, this method runs around 54 frames per second for a sequence with an image resolution of 352-288, which can be applied to real-time surveillance tasks.
出处 《光电工程》 CAS CSCD 北大核心 2009年第7期36-40,共5页 Opto-Electronic Engineering
基金 国家863计划高新技术预研课题资助项目(2003AA823050)
关键词 视频监控 遗失目标检测 背景更新 证据图像 实时处理 video surveillance abandoned object detection background update evidence image real-time processing
  • 相关文献

参考文献9

  • 1LüFeng-jun,,SONG Xue-feng,WU Bo,et al.Left-Luggage Detection using Bayesian Inference[].Proceedings of IEEE International Workshop on Performance Evaluation in Tracking and SurveillanceJune.2006 被引量:1
  • 2Martinez-del-Rincon J,Herrero-Jaraba J E,Gomez J R,et al.Automatic Left Luggage Detection and Tracking using Multi-camera UKF[].Ninth IEEE International Workshop onPerformance Evaluation of Tracking and SurveillanceJune.2006 被引量:1
  • 3Auvinet E,Grossmann E,Rougier C,et al.Left-Luggage Detection using Homographies and Simple Heuristics[].Proceedings of IEEE International Workshop on Performance Evaluation in Tracking and Surveillance.2006 被引量:1
  • 4Venetiancer P L,Zhang Z,Yin W,et al.Stationary Target Detection using the ObjectVideo Surveillance System[].Proceedings of IEEE Conference on Advanced Video and Signal Based Surveillance.2007 被引量:1
  • 5Amer A,Dubois E,Mitiche A.Rule-based Real-time Detection of Context-independent Events in Video Shots[].Real Time Imaging.2005 被引量:1
  • 6Mathew R,Yu Z,Zhang J.Detecting New Stable Objects in Surveillance Video[].Proceedings of IEEE Workshop on Multimedia Signal Processing.2005 被引量:1
  • 7Kim K,Chalidabhongse T H,Harwood D,et al.Real-time Foreground-Background Segmentation using Codebook Model[].Real Time Imaging.2005 被引量:1
  • 8YANG Tao,LI Stan-zi,PAN Quan,et al.Real-time and Accurate Segmentation of Moving Objects in Dynamic Scene[].Proceedings of ACM Multimedia-nd International Workshop on Video Surveillance and Sensor Networks.2004 被引量:1
  • 9Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000 被引量:1

同被引文献20

  • 1张凯.视频运动检测算法的研究和分析[J].辽宁工学院学报,2007,27(1):26-28. 被引量:8
  • 2M Bhargava, C C Chen, M S yoo, J K Aggarwal. Detection of object abandonment using temporal logic [ J]. Machine Vision and Applications, 2009,20(5) :271-281. 被引量:1
  • 3C Stauffer, W E L Grimson. Learning Patterns of Activity using Real-time Tracking [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22( 8 ) : 747-757. 被引量:1
  • 4H Liao, J Chang, L Chen. A Localized Approach to Abandoned Luggage Detection with Foreground-Mask Sampling[ C ]. 2008 5th IEEE Int. Conference on AVSS, Santa Fe, New Mexico, USA : IEEE Press, 2008. 132-139. 被引量:1
  • 5C Sacehi, C Regazzoni, G Gera, G Foresti. Use of neural networks for behaviour understanding in railway transport monitoring applications[ C ]. Proceedings of International Conference on Image Processing. Thessaloniki, Greece, 2001 :IEEE Press, 2001,1:541 - 544. 被引量:1
  • 6C Sacchi, C Regazzoni, G Vernazza. A Neural Network-Based Image Processing System for Detection of Vandal Acts in Unmanned Railway Environments [ C ]. 11 th International Conference on Image Analysis and Processing, Los Alamitos, Calif: IEEE Computer Society, 2001. 0529-0529. 被引量:1
  • 7F Lu, X Song, B Wu, V K Singh, R Nevatia. Left-Luggage Detection using Bayesian Inference[ C]. Pro. 9th IEEE Int. Workshop on PETS. New York,USA:IEEEPress, 2006.83-90. 被引量:1
  • 8A Singh, S Sawan, M Hanmandlu, V K Madasu, B C Lovell. An abandoned object detection system based on dual background segmentation [ C ]. 2009 6th IEEE Int. Conference on AVSS. Los Alamitos, Calif: IEEE Computer Society, 2009. 352-357. 被引量:1
  • 9F Porikli, Y Ivanov, T Haga, Robust Abandoned Object Detection Using Dual Foregrounds[ J]. Eurasip Journal on Advances in Signal Processing, vol. 2008, 2008,(30) :1-10. 被引量:1
  • 10Y Tian, Rogerio Feris, Arun Hampapur. Real-Time Detection of Abandoned and Removed Objects in Complex Environments[ C]. IEEE International Workshop on Visual Surveillance ( in conjunction with ECCV'08). Marseille, France:IEEE Press, 2008. 被引量:1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部