期刊文献+

基于Davinci-DM6467的高斯混合模型算法的实现 被引量:3

Realization of gaussian mixture model algorithm based on Davinci-DM6467
下载PDF
导出
摘要 针对智能监控中运动目标检测的问题,提出了基于Davinci-DM6467的高斯混合模型像素级的背景分割策略。对彩色图像建立高斯混合模型,根据场景中象素点的稳定性来调整模型参数的更新速率;通过和马氏阈值进行对比来判断是不是要更新背景模型;通过和背景阈值进行对比来判断哪几个模型是属于背景区域。经验证性实验测试,结果表明,高斯混合模型在运动检测中实时性好,对环境有较强的鲁棒性。 In the light of movement target detection during intelligence monitoring, the author put forward Gaussian mixture model of pixel level background segmentation strategy based on Davinei-DM6467. Firstly establishing Gaussian mixture model for colorful images and then adjusting the updating velocity of model parameters according to the stability of each pixels in frames ; secondly comparing them with Markov threshold to judge whether to update the background model; finally comparing them with back-ground threshold to judge which several models belong to background region. Experimental results show that Gaussian mixture model in motion detection is possessed of good real-time and strong robustness to environment.
出处 《阜阳师范学院学报(自然科学版)》 2012年第2期69-72,76,共5页 Journal of Fuyang Normal University(Natural Science)
基金 阜阳师范学院产学研项目(2010CXY04) 阜阳师范学院产学研重点项目(KJ2012A218) 安徽省教育厅自然科学研究项目(KJ2011Z292) 安徽省自然科学基金(090416238)资助
关键词 高斯混合模型 运动目标检测 马氏阈值 背景阈值 gaussian mixture model movement target detection markov threshold background threshold.
  • 相关文献

参考文献7

  • 1Deepu T, Jeremiah G. Using Davinci Technology for Digital Video Devices[ M ]. Texas:IEEE Computer So- ciety, October 2007:53-61. 被引量:1
  • 2Texas Instruments. TMS320DM6467 Digital Media Sys-tem on Chip. pdf[ EB/OL]. [2010-10-01 ]. http:// www. ti. com. cn/product/cn/tms320dm6467. 被引量:1
  • 3Texas Instruments. Vision Library (VLIB) Application Programming Interface [ EB/OL ]. [ 2010-07-10 ]. SPRUGOOA-April 2009, http ://www. ti. com. 被引量:1
  • 4Elhabian S Y, Elsayed K M, Ahmed S H. Moving ob- ject detect ion in spatial domain using background re- moval techniques state of art [ J]. Recent Patents on Computer Science, 2008, 1 ( 1 ) : 32-54. 被引量:1
  • 5Bouwmans T, Elbaf F, Vaehon B. Background modeling using mixture of Gaussians for foreground detection-A survey [ J]. Recent Patents on Computer Science, 2008, 1 (3) : 219 -237. 被引量:1
  • 6李全民,张运楚.自适应混合高斯背景模型的改进[J].计算机应用,2007,27(8):2014-2017. 被引量:21
  • 7崔文频,沈继忠.基于改进高斯混合模型的运动物体的图像检测[J].光电工程,2010,37(4):118-124. 被引量:6

二级参考文献24

  • 1HORN B,SCHUNCK B G. Determining optical flow [J]. Artificial Intelligence(S0974-0635),1981,17:185-203. 被引量:1
  • 2TEKALPAM. Digital Video Processing [M]. Prentice-Hall,1995:526-532. 被引量:1
  • 3MITTAL A,PARAGIOS N. Motion-based background subtraction using adaptive kernel density estimation [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington, DC, USA,June 27-July 2,2004,2:302-309. 被引量:1
  • 4STAUFFER C,GRIMSON W. Adaptive background mixture models for real-time tracking [C]// Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Fort Collins, CO,June 23-25,1999,2:252. 被引量:1
  • 5HARITAOGLU I,HARWOOD D,DAVIS L S,et al. W4: real-time surveillance of people and theiractivities [J]. IEEE Transactions on Pattern Analysis And Machine Intelligence(S0162-8828),2000,22(8):809-830. 被引量:1
  • 6TSAIG Y,AVERBUCH A. Automatic segmentation of moving objects in video sequences:a region labeling approach [J]. IEEE Transactions on Circuits And Systems For Video Technology(S1051-8215),2002,12(7):597-612. 被引量:1
  • 7BURT P J,HONG T H,ROSENFELD A. Segmentation and estimation of image region properties through cooperative hierarchial computation [J]. IEEE Transactions on Systems, Man and Cybernetics(S1083-4427),1981,11(12):802-809. 被引量:1
  • 8PRATT W K. Digital Image Processing: 1st ed [M]. New York:John Wiley & Sons,1978. 被引量:1
  • 9PHONG B T. Illumination for computer generated pictures [J]. Communications of the ACM(S0001-0782),1975,18(6):311-317. 被引量:1
  • 10FANG X H,XIONG W,HU B J,et al. A Moving Object Detection Algorithm Based on Color Information [J]. Journal of Physics: Conference Series(S1742-6588),2006,48:384-387. 被引量:1

共引文献24

同被引文献27

  • 1BOUWMANS T, ELBAF F, VACHON. B. Background modeling using mixture of Gaussians for foreground detection A survey [J]. Recent Patents on ComputerScience,2008,1(3):219-237. 被引量:1
  • 2RICHARDS J, JIA X. Remote Sensing Digital Image Analysis: an Introduction[ M]. NY : Springer Verlag, 2006. 被引量:1
  • 3DEMPSTER A, LAIRD N, RUB1N D. Maximum Likeli- hood from Incomplete Data via tile EM Algorithm [J]. Journal of the Royal Statistical Society, Series B (Methodological), 1977,39( 1 ) : 1-38. 被引量:1
  • 4MCLVER I), FRIEDL M. Using Prior Probabilities in Decision tree Classification of Remotely Sensed Data[J]. Remote Sensing of Environment, 2002,81 (2) : 253-261. 被引量:1
  • 5AUVINET E, GROSSMANN E, ROUGIER C, et al. Left-luggage detection using homographies and simple heuristics [C]// Proceedings of IEEE International Workshop on Performance Evaluation in Tracking and Surveillance. New York, USA: IEEE Press, 2006: 51-58. 被引量:1
  • 6MIEZIANKO R, POKRAJAC D. Detecting and recognizing abandoned objects in crowded environments [J]. Computer Vi- sion Systems (S0302-9743), 2008, 5008: 241-250. 被引量:1
  • 7LI X L, ZHANG C, ZHANG D. Abandoned objects detection using double illumination invariant foreground masks [C]// Pro- ceedings of 20th International Conference on Pattern Recogni- tion. Istanbul: ICPR, 2010: 436-439. 被引量:1
  • 8KIM K, CHALIDABHONGSE T H, HARWOOD D, et al. Real- time foreground-background segmentation using codebook model [J]. Real-Time Imaging, 2005, 11(3): 172-185. 被引量:1
  • 9YANG Tao, LI Stan-zi, PAN Quan, et al. Real-time and accu- rate segmentation of moving objects in dynamic scene [C]//Pro- ceedings of ACM Multimedia-2nd International Workshop on Video Surveillance and Sensor Networks. New York, USA: ACM Press, 2004: 136-143. 被引量:1
  • 10李德仁.摄影测量与遥感学的发展展望[J].武汉大学学报(信息科学版),2008,33(12):1211-1215. 被引量:69

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部