期刊文献+

基于近红外高光谱成像技术的马铃薯干物质含量无损检测 被引量:13

Non-destructive determination of dry matter content in potatoes based on near-infrared hyperspectral imaging technique
下载PDF
导出
摘要 基于近红外高光谱成像技术对马铃薯干物质含量进行无损检测研究。运用偏最小二乘回归系数法对多元散射校正(MSC)预处理后的光谱优选出8个特征波长,采用粒子群算法优化支持向量机(PSO-SVM)和偏最小二乘回归算法(PLSR)分别建立特征波长预测模型并对比分析。结果表明,采用粒子群算法优化支持向量机(PSO-SVM)建立的特征波长预测模型优于偏最小二乘回归算法(PLSR)预测模型,校正和验证模型的相关系数和均方根误差分别为0.944 37、0.919 77和0.155 01、0.156 90,高光谱成像技术对马铃薯干物质含量无损检测是可行的。 Dry matter content of potatoes was determined using nearinfrared hyperspectral imaging technique. The original spectra were pretreated by multiplicative scatter correction, 8 optimal wavelengths were selected by regression coefficients of partial least-squares mod- els in the spectral region between 990 nm and 1 630 nm. Prediction models were built using Particle Swarm Optimization Algorithm optimizing Support Vector Machine method (PSO-SVM) and Partial Least Squares Regression method (PLSR) based on the optimal wavelengths. The results showed that prediction models based on PSO-SVM method in the optimal wavelengths are better than PLSR method for predicting the dry matter content in potatoes, its correla tion coefficient and root mean square error of calibration and validation models are 0. 944 37, 0.919 77 and 0. 155 01, 0. 156 90, respectively. Therefore, I's feasible to determinate the dry matter content in potatoes using hyperspectral imaging technique.
出处 《食品与机械》 CSCD 北大核心 2014年第4期133-136,150,共5页 Food and Machinery
基金 宁夏自然科学基金资助项目(编号:NZ13005)
关键词 高光谱成像技术 马铃薯 干物质 无损检测 hyperspectral imaging technique potato dry matter non-destructive detection
  • 相关文献

参考文献18

二级参考文献201

共引文献380

同被引文献189

引证文献13

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部