期刊文献+

正交频分复用与Weyl-Heisenberg框架 被引量:2

Orthogonal Frequency Division Multiplexing and Weyl-Heisenberg Frame
下载PDF
导出
摘要 分析讨论L2 (Rs)上Weyl_Heisenberg框架的有关性质 ,阐明了OFDM系统与Weyl_Heisenberg框架的关系 .在深入研究Weyl_Heisenberg框架的基础上 ,给出了文 [2 1]中提出的OFDM系统设计的理论根据 . The paper discusses Related properties of Weyl_Heisenberg frame on L 2(R s) and relation between OFDM system and Weyl_Heisenberg frame. For the OFDM system design which was put forward in , the theoretical origin is given on the basis of the deep investigation of Weyl_Heisenberg frame.
出处 《河南大学学报(自然科学版)》 CAS 2002年第2期40-44,共5页 Journal of Henan University:Natural Science
基金 河南省高校青年骨干教师资助计划项目 2 0 0 2年度河南大学自然科学基金
关键词 正交频分复用 框架 WEYL-HEISENBERG框架 Orhtogonal frequency division multiplexing frame Weyl_Heisenberg frame
  • 相关文献

参考文献5

  • 1Helmut B?lcskei,J. E. M. Janssen. Gabor frames, unimodularity, and window decay[J] 2000,The Journal of Fourier Analysis and Applications(3):255~276 被引量:1
  • 2Thomas Strohmer. Rates of convergence for the approximation of dual shift-invariant systems in ?2(?)[J] 1999,The Journal of Fourier Analysis and Applications(6):599~615 被引量:1
  • 3Helmut B?lcskei. A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported[J] 1999,The Journal of Fourier Analysis and Applications(5):409~419 被引量:1
  • 4Ralf Haas,Jean-Claude Belfiore. A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission[J] 1997,Wireless Personal Communications(1):1~18 被引量:1
  • 5A.J.E.M. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames[J] 1994,Journal of Fourier Analysis and Applications(4):403~436 被引量:1

同被引文献11

  • 1Bolcskei H. Efficient design of pulse shaping filters for OFDM systems[J]. In SPIE Proc., Wavelet Applications in Signal and Image Processing VII, 1999, 3813: 625-636. 被引量:1
  • 2Daubechies I. Ten Lectures on Wavelets[M]. Philadelphia:SIAM, 1992:61. 被引量:1
  • 3Vaidyanathan P P. Multisystems and filter banks[M]. Prentice Hall, New Jersey, 1993. 被引量:1
  • 4Janssen A J E M, Strohmer T. Characterization and computation of canonical tight windows for Gabor frames[J]. J. Fourier Anal. Appl., 2002, 8(1): 1-28. 被引量:1
  • 5Zou W Y, Wu Y. COFDM: An overview[J]. IEEE Trans. Broadc., 1995, 41(1): 1-8. 被引量:1
  • 6Akansu A N, Duhamel P, Lin A M, de Courville M. Orthogonal Transmultiplexs in Communications: A Review[J]. IEEE Trans. Signal Processing, 1998, 46(4): 979-995. 被引量:1
  • 7Le Floch B, Alard M, Berron C. Coded orthogonal frequency division multiplex[J]. Proc. of IEEE, 1995, 83(6): 982-996. 被引量:1
  • 8Rappaport T S. Wireless Communications: Principles & Practice[M]. Prentice Hall, New Jersey, 1996. 被引量:1
  • 9Haas R, Belfiore J C. A time-frequency well-localized pulse multiple carrier transmission[J]. Wirelsee Personal Communications, 1997, 5: 1-18. 被引量:1
  • 10Kozek W, Molisch A. Nonorthogonal pulseshapes for multicarriere communications in doubly dispesive channels[J]. IEEE J. Sel. Areas Comm., 1998, 16(8): 1579-1589. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部