期刊文献+

强正定二次型与Weyl-Heisenberg框架的构造

On the strongly positive definite quadratic forms and the construction of Weyl-Heisenberg frames
原文传递
导出
摘要 本文研究了一类具有特殊结构的无限维二次型,得到这类二次型的对称矩阵是符号为多项式的模的平方的Laurent矩阵,进一步得到了这类二次型是强正定的判断标准以及一类Weyl-Heisenberg框架的构造.本文还研究了这类二次型的矩阵的所有有限维主对角子矩阵的强正定性,并由此得到一类子空间Weyl-Heisenberg框架的构造.最后举例说明本文的主要结果及其应用.本文建立了两个看似不相关的领域间的联系. In this paper,a kind of infinite quadratic forms with special structure are studied.We show that the symmetric matrices of this kind of infinite quadratic forms are Laurent matrices with symbols the square of the module of some polynomails.Then the criterion of the strongly positive definiteness of the infinite quadratic forms and the construction of a kind of Weyl-Heisenberg frames are obtained.We also consider strongly positive definiteness of the diagonal main block sub-matrices of the matrices of the special infinite quadratic forms and the construction of subspace Weyl-Heisenberg frames is established.Finally,some examples are provided for illustrating our main results and their applications.Our results make an interesting connection between two seemingly irrelevant subjects.
作者 郭训香
出处 《中国科学:数学》 CSCD 北大核心 2012年第1期23-30,共8页 Scientia Sinica:Mathematica
基金 西南财经大学211三期青年成长资助项目
关键词 无限维二次型 强正定 WEYL-HEISENBERG框架 子空间Weyl-Heisenberg框架 infinite quadratic form strongly positive definite Weyl-Heisenberg frame subspace WeylHeisenberg frame
  • 相关文献

参考文献13

  • 1Duitln R J, Shaffer A C. A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72:341-366. 被引量:1
  • 2Sz-Nagy B. Expansion theorems of Paley-Wiener type. Duke Math J, 1947, 14:975-978. 被引量:1
  • 3Daubechies I. The wavelet transform, time-freqeency localization and signal analysis. IEEE Trans Inform Theory, 1990, 36:961-1005. 被引量:1
  • 4Daubechies I. Ten Lectures on Wavelets. CBS-NSF Regional Conferences in Applied Mathematics. Philadelphia: SIAM, 1992. 被引量:1
  • 5Meyer Y. Ondelettes et operateurs I, Hermann editeurs des sciences et des arts. Camb Studies in Adv Math, 1992. 被引量:1
  • 6Kaplansky I. The first non-trivial genus of positive definite ternary forms. Math Comp, 1995, 64:341 345. 被引量:1
  • 7Alaca A, Alaca S, Williams K S. Arithmetic progressions and binary quadratic forms. Amer Math Monthly, 2008, 115: 252-254. 被引量:1
  • 8Conway J H. Universal quadratic forms and the fifteen theorem. In: Proceedings of the Conference on Quadratic Forms and Their Applications. Contemp Math 272. Providence, RI: Amer Math Soc, 1999. 被引量:1
  • 9Ono K, Soundararajian K. Ramanujian's tenary quadratic form. Invent Math, 1997, 130:415-454. 被引量:1
  • 10Duke B. On ternary quadratic forms. J Number Theory, 2005, 110:37-43. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部