期刊文献+

进化神经网络中的变异算子研究 被引量:8

Study on a Mutation Operator in Evolving Neural Networks
下载PDF
导出
摘要 针对进化神经网络中遗传算法收敛速度慢和容易早熟这两个难题,提出了一个启发性的变异算子.该算子采用了自适应的变异率和启发式的变异位的选择策略.在多代无进化时,通过提高变异率扩大搜索范围,同时减小变异量进行更细致的搜索.求解XOR问题的实验表明,该算法既具有很快的收敛速度又能自动维持群体的多样性. In order to solve two difficult problems of premature convergence and slow searching speed of genetic algorithms in evolution neural network, a heuristic mutation operator is presented. Adaptive probability of mutation and heuristic mutation points selected is applied in it. When no evolution appears after many generations, the range of search will be extended by increasing probability of mutation, and a fine search will be started. The experiments of XOR problem demonstrate that the operator has fine ability of speedy convergence and maintains the diversity of the population automatically.
出处 《软件学报》 EI CSCD 北大核心 2002年第4期726-731,共6页 Journal of Software
关键词 遗传算法 进化 神经网络 启发式变异算子 多样性 Convergence of numerical methods Genetic algorithms Heuristic methods Mathematical operators Probability
  • 相关文献

参考文献1

二级参考文献2

共引文献83

同被引文献58

  • 1Li Yan, Kang ZhuoComputation Center, Wuhan University, Wuhan 430072, Hubei, China.A Two-Level Subspace Evolutionary Algorithm for Solving Multi-Modal Function Optimization Problems[J].Wuhan University Journal of Natural Sciences,2003,8(S1):249-252. 被引量:3
  • 2刘勇 康立山 陈毓屏.非数值并行算法──遗传算法[M].北京:科学出版社,1995.. 被引量:1
  • 3张文修 吴伟业 梁吉业 等.粗糙集理论与方法[M].北京:科学出版社,2002.. 被引量:30
  • 4王耀南.智能控制系统[M].长沙:湖南大学出版社,1996.. 被引量:80
  • 5M T Hagan,M B Menhaj.Training feedforward networks with the Marquardt algorithm[J].IEEE Trans.Neural Networks, 1994;5:989-993. 被引量:1
  • 6Liang Wang,John Yen.Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter[J].Fuzzy Sets and systems, 1999;101:353-362. 被引量:1
  • 7R Parekh,K Balakrishnan,V Honavor.An empirical comparison of flat-spot elimination techniques in back-propagation networks.The 3rd Workshop on Neural Networks-WNN'92,Auburn,2002 被引量:1
  • 8靳蕃.神经计算智能基础·原理·方法.成都:西南交通大学出版社,2000(Jin Fan.The Intelligence Basis of Neural Computing:Theory & Method (in Chinese).Chengdu:Southwest Jiaotong University Press,2000) 被引量:1
  • 9S E Fahlman.Faster-learning variations of back propagation:An empirical study.In..D Touretzky,G E Hinton,T J Sejnowski eds.In:Proc of the 1988 Connectionist Models Summer School.San Mateo,CA:Morgan Kaufmann Publishers,1988.38~51 被引量:1
  • 10R A Jacobs.Increased rates of convergence through learning rate adaptation.Neural Networks,1988,1(4):295~308 被引量:1

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部