摘要
利用中国原子能科学研究院的中高能质子实验平台,针对两款商用铁电存储器开展了中高能质子单粒子效应实验研究,发现其中一款器件在质子辐照下发生了单粒子翻转和单粒子功能中断.本文主要针对单粒子功能中断效应展开了后续实验研究.首先通过改变质子能量对器件进行辐照,发现单粒子功能中断截面随质子能量的提高而增加.为进一步研究器件发生单粒子功能中断的机理,利用激光微束平台开展了辅助实验,对铁电存储器的单粒子功能中断效应的敏感区域进行了定位,最后发现铁电存储器单粒子功能中断是由器件外围电路发生的微锁定导致的.
Ferroelectric random access memory (FRAM)is a promising memory for space application.The performance of FRAM under irradiation environment should be investigated,especially under proton irradiation environment,which dominates the particles in the space environment.The experiments on single event effects are carried out for two types of FRAMs (FM22L16and FM28V100)based on the proton cyclotron of China institute of atomic energy.Both dynamic and static mode are tested for each chip under the irradiation of proton in an energy range from 30MeV to 90MeV. Single event upsets (SEUs)and single event functional interrupts (SEFIs)are observed only on FM22L16,where the SEFI is recorded as a significantly transient error with or without memory cell upsets.The SEFI can be subdivided into soft SEFI and hard SEFI according to whether those significantly transient errors disappear or not when the irradiation is paused.Single event effect performances of FM22L16are accurately described,and the SEFI cross section in an energy range from 50MeV to 90MeV is obtained experimentally.The cross section of SEFI increases with proton energy increasing and reaches 10-3/cm^2at 90MeV.To further study the mechanism of SEFI,the pulsed laser beam with a wavelength of 1064nm is used to pinpoint the sensitive area of SEFI in the FRAM.Pulsed laser experiment is easy to carry out when single pulsed laser radiates on the device from the back side.Results show that a certain part in peripheral circuit is detected as a sensitive area to SEFI.The sensitive area could be a register or buffer which is vulnerable to irradiation.Only SEUs are observed when the pulsed laser radiates others area of peripheral circuit and memory cell.A hypothesis that a micro latch-up in the CMOS-based peripheral circuit leads to the SEFI is proposed to explain the test results,for the CMOS-based peripheral circuit is sensitive to irradiation.The further reason is the energy deposition in silicon substrate by protons with energies ranging from 30MeV to 90MeV through nuclear r
作者
琚安安
郭红霞
张凤祁
郭维新
欧阳晓平
魏佳男
罗尹虹
钟向丽
李波
秦丽
Ju An-An;Guo Hong-Xia;Zhang Feng-Qi;Guo Wei-Xin;Ouyang Xiao-Ping;Wei Jia-Nan;Luo Yin-Hong;Zhong Xiang-Li;Li Bo;Qin Li(Academic Instituton of Material Science and Engineer,Xiangtan University,Xiangtan 411105,China;Northwest Institute of Nuclear Technology,Xi'an 710024,China;Academic Institution of Nuclear Science and Technology,Xi'an Jiaotong University,Xi'an 710049,China)
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2018年第23期226-232,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11605138
61634008)资助的课题~~
关键词
铁电存储器
中高能质子
单粒子功能中断效应
ferroelectric random access memory
middle energy proton
single event functional interrupt