期刊文献+

脑机接口中半监督学习算法研究 被引量:4

Study of semi-supervised learning for brain computer interface
下载PDF
导出
摘要 为提高脑机接口系统分类的正确率,避免大量烦琐枯燥的学习训练过程,提高其适用性,提出一种改进的基于支持向量机的半监督学习算法。该算法针对在线采集的脑电数据,根据支持向量机判别函数处理未标签样本,调整分类器训练集,同时动态调整支持向量机中惩罚因子C的值,提高了分类器性能。实例分析表明该算法比传统半监督学习算法更适用于脑电信号分类。 To improve the accuracy of Brain Computer Interface system classification and to avoid long-term training process for improving its applicability,an improved semi-supervised learning method based on support vector machine (SVM) is proposed.The algorithm based on the support vector machine discriminate function of unlabeled samples of online EEG data,adjust the classifier training set,and dynamic adjusting value of the penalty factor C in SVM,improve the performance of classifier.Contrasting with the traditional semi-supervised learning algorithm,the results show that the algorithm is applicable to the EEG signal classification.
出处 《电子测量技术》 2014年第5期9-12,共4页 Electronic Measurement Technology
基金 唐山市科学技术研究与发展指导计划项目:思维脑电独立源信号提取的研究(12110210b) 基于层次分析法的群决策系统的研究(12140215a)
关键词 半监督学习 脑机接口 支持向量机 semi-supervised learning brain computer interface support vector machine
  • 相关文献

参考文献14

  • 1ZHU X J. Semi supervised learning literature survey[R]. Madison: University of Wisconsin, 2008. 被引量:1
  • 2WOLPAW J R,BIRBAUMER N,MCFARLAND D J,et al. Brian-computer interfaces for communication and control [J]. Clinical Neurophysiology,2002,113(6) :767-791. 被引量:1
  • 3SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(5): 1087-1095. 被引量:1
  • 4BRUZZONE L, MINGMIN CH, MARCONCINI M. A novel transductive SVM for semisupervised classification of remote-sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(11) : 3363-3373. 被引量:1
  • 5刘美春.脑-机接口系统的类协同式半监督学习[J].科学技术与工程,2013,21(19):5508-5512. 被引量:1
  • 6张学工.模式识别[M].3版北京:清华大学出版社,2010. 被引量:1
  • 7WANG J, XU G ZH, LEI W, et al. Classifying EEG for Brain-Computer Interface using Spatio-temporal Filters [C]. ISICA 2008 ,Wuhan,China,Dec 19-21,2008 : 184-187. 被引量:1
  • 8杨帮华,陆文宇,何美燕,刘丽.脑机接口中基于WPD和CSP的特征提取[J].仪器仪表学报,2012,33(11):2560-2565. 被引量:27
  • 9赵丽,郭旭宏.基于运动想象的脑电信号功率谱估计[J].电子测量技术,2012,35(6):81-83. 被引量:9
  • 10HYVARINEN A. A fast and robust fixed point algorithm for independent component analysis[J]. IEEE Transaction on Neural Networks, 1999,10 (3) : 626-634. 被引量:1

二级参考文献64

共引文献49

同被引文献127

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:893
  • 2刘常昱,冯芒,戴晓军,李德毅.基于云X信息的逆向云新算法[J].系统仿真学报,2004,16(11):2417-2420. 被引量:188
  • 3NEVILLE M. Mental workload: its theory and measure- ment[M]. New York, US: Plenum Press, 1979. 被引量:1
  • 4WILSON G F. Operator functional state assessment for adaptive automation implementation[ Z]. 2005 : 5797. 被引量:1
  • 5VELTMAN H, WILSON G, BUROV A, et al. 3.3.1 Cognitive load[ R]. The Research and Technology Or- ganisatio HART S n (RTO) of NATO, 2003. 被引量:1
  • 6G. NASA-task load index (NASA-TLX); 20 years later[ C]. Sage Publications, 2006. 被引量:1
  • 7HICKS T G, WIERWILLE W W. Comparison of five mental workload assessment procedures in a moving- base driving simulator [ J ]. Human Factors : The Jour- nal of the Human Factors and Ergonomics Society, 1979, 21(2) : 129-143. 被引量:1
  • 8MESHKATI N, LOEWENTHAL A. An eclectic and critical review of four primary mental workload assess- ment methods: a guide for developing a comprehensive model [ J ]. Advances in Psychology, 1988 (52): 251-267. 被引量:1
  • 9PARASURAMAN R. Effects of adaptive function alloca- tion on human performance[ C ]. 1993. 被引量:1
  • 10BYRNE E A, PARASURAMAN R. Psychophysiology and adaptive automation [ J ]. Biological Psychology. 1996, 42(3) : 249-268. 被引量:1

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部