期刊文献+

基于小波变换和AdaBoost极限学习机的癫痫脑电信号分类 被引量:11

Epileptic EEG signals classification based on wavelet transform and AdaBoost extreme learning machine
下载PDF
导出
摘要 针对单一极限学习机(ELM)在癫痫脑电信号研究中分类结果不稳定、泛化能力差的缺陷,提出一种基于互信息(MI)的Ada Boost极限学习机分类算法。该算法将Ada Boost引入到极限学习机中,并嵌入互信息输入变量选择,以强学习器最终的性能作为评价指标,实现对输入变量以及网络模型的优化。利用小波变换(WT)提取脑电信号特征,并结合提出的分类算法对UCI脑电数据集以及波恩大学癫痫脑电数据进行分类。实验结果表明,所提方法相比传统方法以及其他同类型研究,在分类精度和稳定性上有着明显提高,并具有较好的泛化性能。 Aiming at solving the problem of unstable predicted results and poor generalization ability when a single Extreme Learning Machine (ELM) was treated as a classifier in the research of automatic epileptic ElectroEncephaloGram (EEG) signals classification, a classification method of AdaBoost ELM based on Mutual Information (MI) was put forward. The algorithm embedded the MI variable selection into AdaBoost ELM, regarded the final performance of the strong leaner as evaluation index, and realized the optimization of input variables and network model. Wavelet Transform (WT) was used to extract the feature of EEG signal, and the proposed classification algorithm was used to classify the UCI EEG datasets and epileptic EEG datasets of the University of Bonn. The experimental results show that compared to traditional methods and other similar studies, the proposed method significantly has improvement in the classification accuracy and stability, and has better generalization performance.
作者 韩敏 孙卓然
出处 《计算机应用》 CSCD 北大核心 2015年第9期2701-2705,2709,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61374154) 中央高校基本科研业务费专项(DUT13JB08)
关键词 ADABOOST 极限学习机 小波变换 互信息 脑电信号分类 AdaBoost Extreme Learning Machine (ELM) Wavelet Transform (WT) Mutual Information (MI) ElectroEncephaloGram (EEG) signals classification
  • 相关文献

参考文献21

  • 1姚文坡,刘铁兵,戴加飞,王俊.脑电信号的多尺度排列熵分析[J].物理学报,2014,63(7):419-425. 被引量:46
  • 2FU K, QU J, CHAI Y, et al. Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM [ J]. Bio- medical Signal Processing and Control, 2014, 13:15 -22. 被引量:1
  • 3LIP, WANG X, LI F, et al. Autoregressive model in the Lp norm space for EEG analysis [ J]. Journal of Neuroscience Methods, 2015, 240: 170- 178. 被引量:1
  • 4CHUA K C, CHANDRAN V, ACHARYA U R, et al. Analysis of epileptic EEG signals using higher order spectra [ J]. Journal of Medical Engineering & Technology, 2009, 33( 1): 42 -50. 被引量:1
  • 5IEIEBEYLI E D. Wavelet/mixture of experts network structure for EEG signals classification [ J]. Expert Systems with Applications: An International Journal, 2008, 34(3) : 1954 - 1962. 被引量:1
  • 6HU H-W, CHEN Y-L, TANG K. A novel decision-tree method for structured continuous-label classification [ J]. IEEE Transactions on Cybernetics, 2013, 43(6) : 1734 - 1746. 被引量:1
  • 7ZHANG G P. Neural networks for classification: a survey [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Ap- plications and Reviews, 2000, 30(4) : 451 -462. 被引量:1
  • 8李钢,王蔚,张胜.支持向量机在脑电信号分类中的应用[J].计算机应用,2006,26(6):1431-1433. 被引量:19
  • 9CHEN L, ZHANG J, ZOU J, et al. A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection [ J]. Biomedical Signal Processing and Control, 2014, 10: 1 -10. 被引量:1
  • 10SONG Y, ZHANG J. Automatic recognition of epileptic EEG pat- terns via extreme learning machine and multiresolution feature ex- traction[ J]. Expert Systems with Applications, 2013, 40(14): 5477 - 5789. 被引量:1

二级参考文献56

共引文献354

同被引文献71

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部