期刊文献+

脑机接口中基于ICA-RLS的EOG伪迹自动去除 被引量:8

Removal of EOG artifacts from EEG signals in BCI based on ICA-RLS
下载PDF
导出
摘要 眼电(EOG)伪迹是基于脑电(EEG)的脑机接口系统中最重要的干扰。为自动去除这种干扰,提出了基于ICA-RLS的EOG伪迹自动去除算法。首先,ICA将多个导联EEG信号分解成数目相等的若干个独立分量(ICs)。然后,计算并依据每个IC的峰态系数,自动地从ICs中识别出EOG分量。最后,识别出的EOG分量用作RLS自适应滤波器的参考信号,并用该滤波器对原始EEG进行滤波,在无需记录EOG情况下实现EOG伪迹的自动去除。用提出算法对2008年脑机接口竞赛数据进行处理,从去除伪迹后信号的观察、信息保留完整性和最终分类结果的计算进行评价。与标准的ICA算法相比,提出算法能够更好去除EOG伪迹,同时获取更高的分类正确率。 Electrooculogram( EOG) artifact is the most important form of interferences in electroencephalogram( EEG) based brain computer interfaces( BCIs).In order to automatically remove the EOG artifact interference,an EOG artifact automatic removal algorithm based on independent component analysis-recursive least squares( ICARLS) is proposed.Firstly,ICA is used to decompose the multiple channel EEG signals into an equal number of independent components( ICs).Then,the kurtosis value of each IC is calculated,based on which the EOG artifacts can be identified from the ICs.Finally,the identified EOG artifacts are used as the reference signals of the adaptive filter based on RLS; and the filter is used to filter the original EEG signal to reduce interference.After filtering,the EOG artifacts are automatically removed without the need of recording EOG.The EEG data from 2008 BCI competition were processed using the proposed algorithm and evaluated from observing the signal after removing the EOG artifact,computing the integrity of the signal and classification result.Compared with standard ICA algorithm,the proposed algorithm can better remove EOG artifacts and achieve higher classification accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第3期668-674,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60975079 31100709) 上海市浦江人才计划(14PJ1431300)资助项目
关键词 眼电 脑电 ICA-RLS 脑机接口 伪迹去除 EOG EEG ICA-RLS BCI artifact removal
  • 相关文献

参考文献5

二级参考文献71

  • 1吴义根,李可.SPM软件包数据处理原理简介——第一部分:基本数学原理[J].中国医学影像技术,2004,20(11):1768-1772. 被引量:26
  • 2潘丽丽,史振威,唐焕文,唐一源,张伟伟.fMRI信号盲分离的一种独立成分分析算法[J].大连理工大学学报,2005,45(4):607-611. 被引量:6
  • 3万柏坤,綦宏志,赵丽,陈滨津,毕卡诗,陈骞.基于脑电Alpha波的脑-机接口控制实验[J].天津大学学报,2006,39(8):978-984. 被引量:18
  • 4Koles Z J. The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG[J].Electroencephalography and Clinical Neurophysiology , 1991,79(6) :440 - 447,. 被引量:1
  • 5Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [ J ]. Clinical Neurophysiology, 1999, 110 (5) :787 - 798. 被引量:1
  • 6Ramoser H, Miiller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement [ J ]. IEEE Transactions on Rehabilitation Engineering, 2000,8 (4) : 441 - 446. 被引量:1
  • 7Novi Q, Guan C, Dat T H, et al. Sub-band common spatial pattern ( SBCSP ) for brain-computer interface [ C ]//3rd International IEEE/EMBS Conference on Neural Engineering. [S. 1. ] : IEEE, 2007 : 204 - 207. 被引量:1
  • 8Li Y, Gao X, Liu H, et al. Classification of single-trial electroencephalogram during finger movement [ J 3. IEEE Transactions on Biomedical Engineering, 2004,51 (6) : 1019 - 1025. 被引量:1
  • 9Chang C C, Lin C J. LIBSVM: a library for support vector machines[ EB/OL ]. [ 2009 - 04 - 17 ]. http://www, csie. ntu. edu. tw/-cjlin/libsvm. 被引量:1
  • 10Schlogl A, Keinrath C, Scherer R, et al. Information transfer of an EEG-based brain computer interface[ C]//1st International IEEE/EMBS Conference on Neural Engineering. [S. l. ] : IEEE, 2003 : 164 - 173. 被引量:1

共引文献74

同被引文献54

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部