期刊文献+

短沟道双栅MOSFET的亚阈值特性分析 被引量:3

Subthreshold Characteristics of Short-channel Double-gate MOSFETs
下载PDF
导出
摘要 基于泊松方程和拉普拉斯方程,结合双栅MOSFET的边界条件,采用牛顿-拉夫逊迭代法推导了双栅MOSFET亚阈值区全沟道的电势解析解。在亚阈值区电流密度方程的基础上,提出了双栅MOSFET的一个亚阈值电流模型,并获得了亚阈值摆幅的解析公式。通过对物理模型和数值模拟结果进行比较,发现在不同的器件结构参数下,亚阈值摆幅之间的误差均小于5%。 Based on Poisson's equation and Laplace equation, an analytical subthreshold full- channel potential equation of double-gate MOSFETs was derived by combining the boundary con- dition with the Newton-Raphson iteration method. And then, a subthreshold current model of double-gate MOSFETs was presented, and the analytical subthreshold swing equation was de- duced from the subthreshold current density equation. Finally, the comparison between the pro- posed device model and the numerical simulation results shows that the relative error of sub- threshold swing is within 5% with different device structure parameters.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2014年第2期101-105,共5页 Research & Progress of SSE
基金 专用集成电路与系统国家重点实验室开放研究课题基金资助项目(11KF003) 中央高校基本科研业务费专项资助项目(JUS-RP51323B,JUSRP211A37) 江苏高校优势学科建设工程(PAPD) 江苏省六大人才高峰资助项目(DZXX-053)
关键词 双栅金属-氧化物-半导体场效应管 亚阈值特性 摆幅 短沟道效应 double-gate MOSFET subthreshold characteristics swing short channel effect
  • 相关文献

参考文献7

  • 1王豪,王高峰,常胜,黄启俊.纳米双栅MOS器件的二维量子模拟[J].固体电子学研究与进展,2010,30(2):174-179. 被引量:2
  • 2Balestra F, Cristoloveanu S, Benachir X, et al. Doub le-gate silicon-on-insulator transistor with volume in version: A new device with greatly enhanced perform anee[J]. IEEE Electron Device Letters, 1987, 8(9) 410-412. 被引量:1
  • 3Lu Huaxin, Yuan Taur. An analytic potential model for symmetric and asymmetric DG MOSFETs [J]. IEEE Transactions on Electron Devices, 2006, 53(5): 1161-1168. 被引量:1
  • 4Tanaka T, Suzuki K, Horie H, et al. Ultrafast operation of V,hadjusted p^+-n^+ double-gate SOI MOSFETs [J]. IEEE Transactions on Electron Devices, 2004, 51 (9): 1385 1391. 被引量:1
  • 5Frank D, Dennard R H, Nowak E, et al. Device scal- ing limits of Si MOSFETs and their application de- pendence[J]. Proceedings of the IEEE, 2001, 89(3) :259-288. 被引量:1
  • 6王晓晖,汤庭鳌,黄宜平.双栅MOS场效应管精确的二维电势分布与V_(th)的解析模型[J].固体电子学研究与进展,1994,14(4):328-334. 被引量:3
  • 7Liang Xiaoping, Yuan Taur. A 2-D analytical solution for SCEs in DG MOSFETs[J]. IEEE Transactions on Electron Devices, 2004, 51(8): 1385-1391. 被引量:1

二级参考文献18

  • 1蒲月皎,刘丕均,张亚非,王印月.纳米级MOSFET器件模拟的载流子输运模型[J].固体电子学研究与进展,2005,25(2):160-166. 被引量:4
  • 2邵雪,余志平.一种基于非平衡态格林函数的准三维FinFET模型[J].Journal of Semiconductors,2005,26(6):1191-1196. 被引量:3
  • 3Ren Z,Venugopal R,Goasguen S,et al.NanoMOS 2.5:a two-dimensional simulator for quantum transport in double-gate MOSFETs[J].IEEE Trans Electron Devices,2003,50(9):1914-1925. 被引量:1
  • 4Abdolkader T M,Farouk W F,Omar O A,et al.FETMOSS:a software tool for 2D simulation of double-gate MOSFET[J].International Journal of Numerical Modelling-electronic Networks Devices and Fields,2006,19:301-314. 被引量:1
  • 5Curatola G,Iannaccone G.NANOTCAD2D:Two-dimensional code for the simulation of nanoelectronic devices and structures[J].Computational Materials Science,2003,28:342-352. 被引量:1
  • 6Datta S.Quantum Transport:Atom to Transistor[M].Cambridge University Press,2005:29. 被引量:1
  • 7Venugopal R,Ren Z,Datta S,et al.Simulating quantum transport in nanoscale transistors:real versus mode-space approaches[J].Journal of Applied Physics,2002,92(7):3730-3739. 被引量:1
  • 8Luisier M,Scbenk A,Fichmer W.Quantum transport in two-and three-dimensional nanoscale transistors:coupled mode effects in the nonequilibrium Green's function formalism[J].Journal of Applied Physics,2006,100(4):043713-12. 被引量:1
  • 9Anantram M P,Lundstrom M S,Nikonov D E.Modeling of nanoscale devices[C].Proceedings of the IEEE,2008,96(9):1511-1550. 被引量:1
  • 10Svizhenko A,Anantram M P,Govindan T R,et al.Two-dimensional quantum mechanical modeling of nanotransistors[J].Journal of Applied Physics,2002,91(4):2343-2354. 被引量:1

共引文献3

同被引文献25

  • 1王晓晖,汤庭鳌,黄宜平.双栅MOS场效应管精确的二维电势分布与V_(th)的解析模型[J].固体电子学研究与进展,1994,14(4):328-334. 被引量:3
  • 2Gupta S K,Baishya S.3D-TCAD simulation study of an electrically induced source/drain cylindrically surrounding gate MOSFETs for reduced SCEs and HCEs[J].IEEE Transactions on Electron Decivces,2011,11(3):429-432. 被引量:1
  • 3Dubey S,Santra A,Saramekala G,et al.An analytical threshold voltage model for triple-material cylindrical gate-all-around(TM-CGAA)MOSFETs[J].IEEE Transactions on Nanotechnology,2013,12(5):766-774. 被引量:1
  • 4Dhanaselvam P S,Balamurugan N B,Ramakrishnan V N,et al.A 2Dtransconductance and sub-threshold behavior model for triple material surrounding gate(TMSG)MOSFETs[J].Microelectronics Journal,2013,44(12):1159-1164. 被引量:1
  • 5Chiang T.A compact interface-trapped-charge-induced subthreshold current model for surrounding-gate MOSFETs[J].IEEE Transactions on Device and Materials Reliability,2014,14(2):766-768. 被引量:1
  • 6Bhanu C D,Vadthiya N,Kumar A,et al.Suppression of short channel effects(SCEs)by dual material gate vertical surrounding gate(DMGVSG)MOSFET:3-D TCAD simulation[J].Procedia Engineering,2013,64:125-132. 被引量:1
  • 7He J,Liu L,Zhang J,et al.A carrier-based approach for compact modeling of the long-channel undoped symmetric double-gate MOSFETs[J].IEEE Transactions on Electron Devices,2007,54(5):1203-1209. 被引量:1
  • 8Dey A,Chakravort A,Dasgupta R,et al.Analytical model of subthreshold current and slope for asymmetric 4-T and 3-T double-gate MOSFETs[J].IEEE Transactions on Electron Devices,2008,55(12):3442-3449. 被引量:1
  • 9D Long,X Hong,S Dong.Optimal two-dimension common centroid layout generation for mos transistors unit-circuit[C]// Circuits and Systems,2005.ISCAS 2005.IEEE Intemational Symposium on.Kobe Japan:IEEE,2005,3:2999-3002. 被引量:1
  • 10Yang S H,KH Kim,YH Kim,et al.A novel CMOS operational transconductance amplifier based on a mobility compensation technique[J].IEEE Transaction on Circuits Systems II:Express Briefs(SI549-7747),2005,52(1):37-42. 被引量:1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部