期刊文献+

一类具有时滞及非线性感染率的病毒感染模型的稳定性及分支分析 被引量:1

Stability Properties and Hopf Bifurcation of a Class of Viral Infection Model with Intracellular Delay and Nonlinear Incidence
下载PDF
导出
摘要 将时滞及饱和发生率引入到一类具有初级细胞毒性T淋巴细胞(CTLp)和效应细胞毒性T淋巴细胞(CTLe)免疫反应的病毒感染模型,证明了改进后模型无病毒感染平衡点及无免疫平衡点的全局渐近稳定性.同时,给出了免役应答平衡点(正平衡点)产生Hopf分支的充分条件.最后,数值模拟验证了理论结果. Intracellular delay and nonlinear infection rate were introduced into a class of viral infection model with primary and secondary CTL response to viral infections. Global asymptotic stability of the infection free equilibrium and the no-immune response equilibrium were discussed. Then, the conditions for the existence of Hopf bifurcation near the positive equilibrium were given. Finally, numerical simulations verified the theoretical results.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2014年第2期162-166,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11071013)
关键词 非线性感染率 时滞 稳定性 HOPF分支 nonlinear infection rate intraeellular delay stability Hopf bifurcation
  • 相关文献

参考文献18

  • 1陈兰荪等著..数学生态学模型与研究方法[M].成都:四川科学技术出版社,2003:318.
  • 2陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009. 被引量:32
  • 3宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011. 被引量:13
  • 4唐三一著..单种群生物动力系统[M].北京:科学出版社,2008:552.
  • 5马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.
  • 6陈海英,裴利军.人工胰岛素泵生理系统全局指数渐近稳定性与血糖稳定[J].郑州大学学报(理学版),2012,44(4):50-54. 被引量:3
  • 7Chan B S, Yu P. Bifurcation analysis in a model of cytotoxic T-lymphocyte response to viral infections [J]. Nonlinear Analysis: Real World Ap- plications, 2012, 13: 64-77. 被引量:1
  • 8Li D, Ma W B. Asymptotic properties of an HIV-1 infection model with time delay [ J ]. Journal of Mathematical Analysis and Applications, 2007, 335 : 683-691. 被引量:1
  • 9Nowak M, Bonhoeffer S, Shaw G M, et al. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations [ J]. Jour- nal of Theoretical Biology, 1997, 184 (2):203-217. 被引量:1
  • 10Song X Y, Neumann A. Global stability and periodic solution of the viral dynamics [ J ]. Journal of Mathematical Analysis and Applications, 2007 , 329 : 281-297. 被引量:1

二级参考文献14

  • 1The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus[J].New England Journal of Medicine,1993,(14):977-986. 被引量:1
  • 2Engelborghs K,Lemaire V,Belair J. Numerical bifurcation analysis of delay differential equations arising from physiological modeling[J].Journal of Mathematical Biology,2001,(04):361-385. 被引量:1
  • 3Li J,Kuang Y,Mason C C. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays[J].Journal of Theoretical Biology,2006,(03):722-735. 被引量:1
  • 4Sturis J,Polonsky K S,Mosekilde E. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose[J].American Physiological Society,1991,(05):801-809. 被引量:1
  • 5Li Jiaxu,Kuang Yang. Analysis of a model of the glucose-insulin regulatory system with two delays[J].SIAM Journal of Applied Mathematics,2007,(03):757-776. 被引量:1
  • 6Tolic I M,Mosekilde E,Sturis J. Modeling the insulin-glucose feedback system:the significance of pulsatile insulin secretion[J].Journal of Theoretical Biology,2000,(03):361-375. 被引量:1
  • 7Moore M C,Connolly C C,Cherrington A D. Autoregulation of hepatic glucose production[J].European Journal of Endocrinology,1998,(03):240-248. 被引量:1
  • 8DeFronzo R A,Ferrannini E. Regulation of hepatic glucose metabolism in humans[J].Diabetes/Metabolism Reviews,1987,(02):415-459. 被引量:1
  • 9Xu Jian,Pei Lijun. Effects of technological delay on insulin and blood glucose in a physiological model[J].International Journal of Non-Linear Mechanics,2010.628-633. 被引量:1
  • 10Pei Lijun,Wang Qingyun,Shi Hongtao. Bifurcation dynamics of the modified physiological model of artificial pancreas with insulin secretion delay[J].Nonlinear Dynamics,2011,(03):417-427. 被引量:1

共引文献45

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部