摘要
研究了一类具有时滞的HIV体内感染模型,引入了以受感染T*细胞释放出病毒的持续时间为时滞参数.通过Routh-Hurwitz准则和构造Lyapunov函数及对系统非负不变性分析,得出边界平衡点具有全局稳定性.并证明了存在临界值τ0,当τ<τ0时,内部平衡点是局部渐近稳定的;当τ>τ0时,内部平衡点是不稳定的;当τ=τ0时,系统具有Hopf分支.最后利用Matlab软件进行数值模拟并验证了分析的合理性.
The HIV infection in vivo model with time delay is studied,which incorporates the duration for the infected T* cells to release the virus as the delay parameter.The global stability of the boundary equilibria is obtained by using the Routh-Hurwitz criteria,constructing Lyapunov function and the nonnegative invariance analysis of the system.And the existence of the threshold τ0 is proved,the inner equilibria is local asymptotic stable as ττ0;the inner equilibria is unstable as τ=τ0,it appears a Hopf bifurcation in the system as τ τ0.At last the numerical simulation is given with the Matlab software,and the rationality of the theoretical analysis is verified.
出处
《西安工程大学学报》
CAS
2011年第1期104-112,共9页
Journal of Xi’an Polytechnic University
关键词
时滞
HIV
稳定性分析
HOPF分支
数值模拟
time delay
HIV
stability analysis
Hopf bifurcation
numerical simulation