期刊文献+

一类具有时滞的HIV感染模型的稳定性分析

Stability and Hopf bifurcation of an HIV model with time delay
下载PDF
导出
摘要 研究了一类具有时滞的HIV体内感染模型,引入了以受感染T*细胞释放出病毒的持续时间为时滞参数.通过Routh-Hurwitz准则和构造Lyapunov函数及对系统非负不变性分析,得出边界平衡点具有全局稳定性.并证明了存在临界值τ0,当τ<τ0时,内部平衡点是局部渐近稳定的;当τ>τ0时,内部平衡点是不稳定的;当τ=τ0时,系统具有Hopf分支.最后利用Matlab软件进行数值模拟并验证了分析的合理性. The HIV infection in vivo model with time delay is studied,which incorporates the duration for the infected T* cells to release the virus as the delay parameter.The global stability of the boundary equilibria is obtained by using the Routh-Hurwitz criteria,constructing Lyapunov function and the nonnegative invariance analysis of the system.And the existence of the threshold τ0 is proved,the inner equilibria is local asymptotic stable as ττ0;the inner equilibria is unstable as τ=τ0,it appears a Hopf bifurcation in the system as τ τ0.At last the numerical simulation is given with the Matlab software,and the rationality of the theoretical analysis is verified.
作者 车培红
出处 《西安工程大学学报》 CAS 2011年第1期104-112,共9页 Journal of Xi’an Polytechnic University
关键词 时滞 HIV 稳定性分析 HOPF分支 数值模拟 time delay HIV stability analysis Hopf bifurcation numerical simulation
  • 相关文献

参考文献20

  • 1PERELSON A S, NELSON P W. Mathematical analysis of HIV-1 dynamics in vivo[ J]. SIAM Review,1999,41 ( 1 ) :3-44. 被引量:1
  • 2马知恩等著..传染病动力学的数学建模与研究[M].北京:科学出版社,2004:399.
  • 3周先志,赵敏.滋病诊疗新技术[M].北京:人民军医出版社,2004. 被引量:1
  • 4WANG L C,LI M Y. Mathematical analysis of the global dynamics of a model for HIV infection of CD4^+ T cells[J]. Mathematical Biosciences, 2006,200( 1 ) :44-57. 被引量:1
  • 5CULSHAW R V, RUAN S. A delay differential equation model of HIV infection of CD4^+ T cells [ J J. Mathematical Biosciences,2000,165 ( 1 ) :27-39. 被引量:1
  • 6LEENHEER P D,SMITH H L. Virus dynamics: a golbal analysis[J]. SIAM J Appl Math, 2003,63(4) :1 13-1 27. 被引量:1
  • 7PERELSON A S,NELSON P W. Mathematical analysis of delay differential equation models of HIV-1 infection[J]. Mathematical Biosciences,2002,179(1 ) :73-94. 被引量:1
  • 8FREEDMAN H I, KUANG Y. Stability switches in linear scalar neutral delay equations [ J ]. Funkcialaj Ekvacioj, 1991,34: 187-209. 被引量:1
  • 9HALE J K. Theory of functional differental equations[ M]. New York: Springer-Verlag, 1977. 被引量:1
  • 10RUAN S G, WEI J J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays [ J ]. Dynamics of Continuous, Discrete and Impulsive Systems : Mathematical Analysis,2003,10 : 863-874. 被引量:1

二级参考文献6

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部