期刊文献+

一类传染病模型 被引量:1

An Epidemiological Model
下载PDF
导出
摘要 利用稳定性理论和齐次向量场的性质对一类传染病模型的一般情形进行研究,通过对R2中相应系统的平衡点的存在性和稳定性的分析,得出该类传染病持续生存和最终消亡的阈值,而且它与治愈者的死亡率以及治愈者向易感者的转化率无关. In this paper,we propose an epidemiological model in a normal situation. This model is established in the form of differential equations. The dynamical behavior of the model is studied by using the method of homogeneous vector fields. By analyzing the existence and stability of the system's equilibrium point, we get the threshold of disease spread and death. The results do not relate with the ratio of death of recovery and ratio of transitions of recovery to susceptible persons.
出处 《应用数学》 CSCD 北大核心 2011年第3期474-478,共5页 Mathematica Applicata
基金 国家自然科学基金资助项目(10771081) 湖北省教育厅科学技术重点研究项目(D20113005)
关键词 传染病 齐次向量场 平衡点 稳定性 阈值 Infectious disease Homogeneous vector field Equilibrium point Stability Threshold
  • 相关文献

参考文献9

二级参考文献18

  • 1樊志良,张菊平.传染系数为β(N)的SIR传染病模型[J].中北大学学报(自然科学版),2006,27(2):175-177. 被引量:7
  • 2COOKE K. Stability Analysis for A Vector Disease Model[J]. Rocky Mount, J. Math. ,1979(9) : 31-42. 被引量:1
  • 3ANDERSON R M ,MAY R M. Regulation and Stability of Host-parasite Population Interactions [J]. Journal of Animal Ecology, 1978, 47: 219-267. 被引量:1
  • 4KUANG Y. Delay Differential Equations with Applications in Population Dynamics[ M ]. New York: Academic Press,1993. 被引量:1
  • 5YANG X,CHEN L,CHEN J. Permanence and Positive Periodic Solution for the Single Species Nonautonomous Delay Diffusive Model [J]. Comp. Math. Appl. ,1996,32:109-116. 被引量:1
  • 6Ma Z, Liu J P, Li J. Stability analysis for differential infectivity epidemic models[J]. Nonlinear Anal Real World Applications, 2003,4 ( 5 ) : 841-856. 被引量:1
  • 7Moghadas S M. Two core group models for sexual transmission of disease[J]. Ecological Modelling, 2002,148 (1): 15-26. 被引量:1
  • 8Hyman J M, Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations[J]. Math Biosci,2000,167(1) : 65-86. 被引量:1
  • 9陆征,周义仓.数学生物学进展[M].北京:科学出版社,2006. 被引量:1
  • 10陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009. 被引量:32

共引文献50

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部