期刊文献+

机电集成超环面传动系统参数振动研究 被引量:2

Parametric vibration of an electromechanical integrated toroidal drive
下载PDF
导出
摘要 针对机电集成超环面传动过程中存在啮合齿对数周期性变化现象,考虑啮合刚度时变特性建立系统参数动力学模型及微分方程,据Floquet理论推导系统稳定性判断因子表达式,给出机电设计参数对系统稳定性影响规律。采用数值积分方法证实系统存在多个共振频率:固有频率共振、啮合频率及组合频率共振,给出各共振情况下频域响应曲线。结果表明,系统发生共振时除外激励频率成分外,亦含各阶固有频率及固有频率与啮合频率的组合频率成分,且啮合频率共振与组合频率共振振幅最大频率发生在系统固有频率处,非外激励频率处。稳定性及强迫响应规律可为系统结构及机电参数设计提供理论依据。 There are periodic changes of meshing teeth in an electromechanical integrated toroidal drive Considering time-varying meshing stiffness, the dynamic model and differential equations of motion for the parametric vibration of the system were established. According to the theory of Floquet, the judging factor expression for the system stability was derived, and the influence laws of mechanical and electrical design parameters on the system stability were deduced. Then, multi-frequency resonances were revealed with the numerical integral method for the parametric vibration system, i. e., natural frequencies resonances, meshing frequencies and combination frequencies resonances, and the corresponding frequency response curves were obtained. The results showed that except the component of excitation frequency, the component of natural frequencies and combination frequencies between natural frequencies and meshing frequencies exist in the system resonances; the frequencies of the maximum amplitude are located at the natural frequencies, not at external excitation frequency. System stability and forced response laws provided a theoretical basis for designing of structure, and mechanical and electrical parameters.
出处 《振动与冲击》 EI CSCD 北大核心 2013年第22期113-118,134,共7页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51075350) 河北省自然科学基金资助项目(E2012203012)
关键词 机电集成 超环面 参数振动 稳定性 频域响应 electromechanical integration toroidal drive parametric excitation stability frequency response
  • 相关文献

参考文献10

  • 1Wang L L,Chau K T.A coaxial magnetic gear with halbach permanent-magnet arrays[J].IEEE Transactions on Energy Conversion,2010,25 (2):319-328. 被引量:1
  • 2许立忠,郝秀红.机电集成超环面行星蜗杆传动机电耦合动力学[M].北京:兵器工业出版社,2010. 被引量:5
  • 3王建军,韩勤锴,李其汉.参数振动系统和齿轮啮合振动稳定性分析方法研究[R].中国力学学会学术大会,2009. 被引量:1
  • 4Bauchau O A,Nikishkov Y G.An implicit floquet analysis for rotorcraft stability evaluation[J].Journal of the American Helicopter Society,2001,46 (3):200-209. 被引量:1
  • 5Richards J A.Analysis of periodically time-varying systems.[M].New York:Springer-Verlag,1983. 被引量:1
  • 6Mennem R C.Parametrically excited vibrations in spiral bevel geared systems[D].West Lafayette:Purdue University,2004. 被引量:1
  • 7Zevin A A.Generalized index for Hamiltonian systems with applications[J].Nonlinearity,2005,18 (5):1885-1900. 被引量:1
  • 8王建军,韩勤锴,李其汉.参数振动系统响应的频谱成分及其分布规律[J].力学学报,2010,42(3):535-540. 被引量:4
  • 9Xu L Z,Hao X H.Dynamic model of electromechanical integrated toroidal drive[J].International Journal of Applied Electromagnetics and Mechanics,2005,22 (3-4):199-211. 被引量:1
  • 10陈予恕著..非线性振动[M].北京:高等教育出版社,2002:390.

二级参考文献27

  • 1王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 2Ibrahim RA. Parametric vibration-part III: current problems (1). The Shock and Vibration Digest, 1978, 10(3): 41-57. 被引量:1
  • 3Ibrahim RA. Parametric vibration-part III: current problems (2). The Shock and Vibration Digest, 1978, 10(4): 19-47. 被引量:1
  • 4Bolotin VV. Dynamic Stability of Elastic Systems. San Francisco: Holden-Day, 1964. 被引量:1
  • 5Yakubovitch VA, Starzhinskii VM. Linear Differential Equations with Periodic Coefficients. Vols I and II. New York: John Wiley, 1975. 被引量:1
  • 6Nayfeh AH, Mook DT. Nonlinear Oscillations. New York: John Wiley, 1979. 被引量:1
  • 7Hsu CS. On approximating a general linear periodic system. Journal of Mathematical Analysis and Applications, 1974, 45:371-378. 被引量:1
  • 8Farhang K, Midha A. Steady-state response of periodically time-varying linear systems with application to an elastic mechanism. ASME Journal of Mechanical Design, 1995, 117:633-639. 被引量:1
  • 9Selstad T J, Farhang K. On efficient computation of the steady-state response of linear systems with periodic coefficients. ASME Journal of Vibration and Acoustics, 1996, 118:522-526. 被引量:1
  • 10Benton M, Seireg A. The application of the Ritz averaging method to determining the response of systems with time varying stiffness to harmonic excitation. ASME Journal of Mechanical Design, 1980, 102:384-390. 被引量:1

共引文献7

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部