期刊文献+

双周期参数系统的受迫振动响应

Forced Response of Dual Periodic Parametric Vibration System
下载PDF
导出
摘要 谐波减速器在制造过程中,如果柔轮齿与刚轮齿引入了周节累积误差,则谐波减速器在动力传递中将出现双周期时变扭刚度波动,形成双周期参数振动问题.本文引入基于组合频率的二重三角级数,逼近双周期参数系统受迫振动,应用谐波平衡,得到不含时间变量的谐波系数递推式,形成三维矩阵代数方程;采用矩阵降维法,将三维矩阵代数方程转化为两维矩阵代数方程,实现响应谐波系数的求解.研究结果对双周期参数振动中响应预测问题研究和工程应用具有一定的理论指导意义. During the manufacturing process of harmonic reducers,if the accumulated pitch error is introduced among the flexible gear teeth and the rigid gear teeth,there will be dual period time-varying torsional stiffness fluctuations in the power transmission of harmonic reducers,resulting in dual period parameter vibration problems.In this paper,the double trigonometric series based on the combination frequency is introduced to approximate the forced vibration response of the dual periodic parameter system.By using harmonic balance operation,the recurrence formula of harmonic coefficient without time variable is obtained,and the three-dimensional matrix algebraic equation is formed.Using the matrix dimension reduction,the three-dimensional matrix algebraic equation is transformed into two-dimensional matrix algebraic equation,and the response harmonic coefficients have been solved.The research results have certain theoretical guidance significance for the research and engineering application in the forced response problem of dual periodic parameter vibration system.
作者 顾京君 童彤 黄迪山 Gu Jingjun;Tong Tong;Huang Dishan(Nantong Zhenkang Machinery Co.,Ltd,Nantong 226153,China;School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China)
出处 《动力学与控制学报》 2024年第3期26-33,共8页 Journal of Dynamics and Control
基金 国家自然科学基金(51575330)。
关键词 双周期参数系统 受迫振动 二重三角级数 谐波减速器 dual periodic parameter system forced vibration double trigonometric series harmonic reducer
  • 相关文献

参考文献2

二级参考文献27

  • 1王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 2Ibrahim RA. Parametric vibration-part III: current problems (1). The Shock and Vibration Digest, 1978, 10(3): 41-57. 被引量:1
  • 3Ibrahim RA. Parametric vibration-part III: current problems (2). The Shock and Vibration Digest, 1978, 10(4): 19-47. 被引量:1
  • 4Bolotin VV. Dynamic Stability of Elastic Systems. San Francisco: Holden-Day, 1964. 被引量:1
  • 5Yakubovitch VA, Starzhinskii VM. Linear Differential Equations with Periodic Coefficients. Vols I and II. New York: John Wiley, 1975. 被引量:1
  • 6Nayfeh AH, Mook DT. Nonlinear Oscillations. New York: John Wiley, 1979. 被引量:1
  • 7Hsu CS. On approximating a general linear periodic system. Journal of Mathematical Analysis and Applications, 1974, 45:371-378. 被引量:1
  • 8Farhang K, Midha A. Steady-state response of periodically time-varying linear systems with application to an elastic mechanism. ASME Journal of Mechanical Design, 1995, 117:633-639. 被引量:1
  • 9Selstad T J, Farhang K. On efficient computation of the steady-state response of linear systems with periodic coefficients. ASME Journal of Vibration and Acoustics, 1996, 118:522-526. 被引量:1
  • 10Benton M, Seireg A. The application of the Ritz averaging method to determining the response of systems with time varying stiffness to harmonic excitation. ASME Journal of Mechanical Design, 1980, 102:384-390. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部