期刊文献+

自适应的分数阶达尔文粒子群优化算法 被引量:18

Adaptive fractional-order Darwinian particle swarm optimization algorithm
下载PDF
导出
摘要 针对分数阶达尔文粒子群算法收敛性能依赖于分数阶次α,易陷入局部最优的特点,提出了一种自适应的分数阶达尔文粒子群优化(AFO-DPSO)算法,利用粒子的位置和速度信息来动态调整分数阶次α,并引入自适应的加速系数控制策略和变异处理机制,以获取更优的收敛性能。对几种典型函数的测试结果表明,相比于现有的粒子群算法,所提的AFO-DPSO算法的搜索精度、收敛速度和稳定性都有了显著提高,全局寻优能力得到了进一步提高。 The convergence performance of the fractional-order Darwinian particle swarm optimization (FO-DPSO) al-gorithm depends on the fractional-orderα, and it can easily get trapped in the local optima. To overcome such shortcom-ing, an adaptive fractional-order Darwinian particle swarm optimization (AFO-DPSO) algorithm was proposed. In AFO-DPSO, both particle’s position and velocity information were utilized adequately, together an adaptive acceleration coefficient control strategy and mutation processing mechanism were introduced for better convergence performance. Testing results on several well-known functions demonstrate that AFO-DPSO substantially enhances the performance in terms of convergence speed, solution accuracy and algorithm stability. Compared with PSO, HPSO, DPSO, APSO, FO-PSO, FO-DPSO and NCPSO, the global optimality of AFO-DPSO are greatly improved.
出处 《通信学报》 EI CSCD 北大核心 2014年第4期130-140,共11页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2012CB315900) 国家高技术研究发展计划("863"计划)基金资助项目(2011AA01A103)~~
关键词 分数阶达尔文粒子群优化 进化因子 分数阶次 加速系数 变异机制 自适应 fractional-order Darwinian particle swarm optimization evolution factor fractional-order acceleration coef-ficients mutation mechanism adaptive
  • 相关文献

参考文献3

二级参考文献20

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582. 被引量:47
  • 3KENNEDY J, EBERHART R C. Particle swarm optimization[A]. Proc of the First IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE Press, 1995. 1942-1948. 被引量:1
  • 4MODARES H, ALFI A, NAGHIBI-SISTANI M B. Parameter estimation of bilinear systems based on an adaptive particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2010, 23(7) 1105-1111. 被引量:1
  • 5KARAKUZU C. Parameter tuning of fuzzy sliding mode controller using particle swarm optimization[J]. International Journal of Innovative Computing, Information and Control, 2010, 6(10):4755-4770. 被引量:1
  • 6KULKARNI R V, VENAYAGAMOORTHY G K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes[J] IEEE Transactions on Systems, Man, and Cybernetics, 2010, 40(6) 663-675. 被引量:1
  • 7ZHANG W, LIU J, NIU Y Q. Quantitative prediction of MHC-II binding affinity using particle swarm optimization[J]. Artificial Intelligence in Medicine,2010,50(2): 127-132. 被引量:1
  • 8GHEITANCHI S, ALI E STIPIDIS E. Particle swarm optimization for adaptive resource allocation in communication networks[J]. EURASIP Journal on Wireless Communications and Networking, 2010. 1-13. 被引量:1
  • 9BERGH E An Analysis of Particle Swarm Optimizers[D]. Department of Computer Science, University of Pretoria, South Africa, 2006 118-123. 被引量:1
  • 10JIAO B, LIAN Z G, GU X S. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitons & Fractals, 2008, 37(3) 698-705. 被引量:1

共引文献201

同被引文献110

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:356
  • 2高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 3王丽,王晓凯.一种非线性改变惯性权重的粒子群算法[J].计算机工程与应用,2007,43(4):47-48. 被引量:60
  • 4Antamoshkin, Alexander N, Kazakovtsev, et al. Random search algorithm for the p-median problem[ J ]. Informatica ( Slovenia), 2013,37(3) :267-278. 被引量:1
  • 5Eberhart R C, Kennedy J. A new optimizer using particles swarm theory [ C ]//Proc Sixth International Symposium on Micro Machine and Human Science. Nagoya,Japan: IEEE Press, 1995 : 39-43. 被引量:1
  • 6Shi Y H, Eberhart R C. A modified particle swarm optimizer[ C ]//IEEE International Conference on Evolutionary Computa- tion. Anchorage. Alaska: IEEE Press, 1998 : 69-73. 被引量:1
  • 7Kennedy J, Eherhart R. Particle swarm optimization [ C ]//Proc IEEE International Conference on Neural Networks. Perth : IEEE Press, 1995 : 1 942-1 948. 被引量:1
  • 8KENNEDY J, EBERHART R. Particle swarm optimization[ C]// Proceedings of the 4th IEEE International Conference on Neural Net- works. Piscataway: IEEE, 1995: 1942- 1948. 被引量:1
  • 9WANG L, YANG B, CHEN Y. Improving particle swarm optimiza- tion using multi-layer searching strategy[ J]. Information Sciences, 2014, 274:70 - 94. 被引量:1
  • 10BEHESHTI Z, SHAMSUDDIN S M, HASAN S. biPSO: Median-o- riented particle swarm optimization [ J]. Applied Mathematics and Computation, 2013, 219(11) : 5817 - 5836. 被引量:1

引证文献18

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部