期刊文献+

基于系统聚类和自适应量子遗传算法的钢卷拼卷方法 被引量:2

Steel coils merging based on system clusters and adaptive quantum genetic algorithm
下载PDF
导出
摘要 为解决冷轧薄板厂冷轧机组的钢卷拼卷问题,建立了该问题的多目标多背包模型。该模型考虑拼卷方式和最大卷重约束,并将最大化拼卷数和最小化卷重偏差作为模型的评价目标。首先,利用系统聚类法确定钢卷分类和背包中心,简化模型的求解;随后设计一种自适应量子遗传算法,求解每类钢卷的拼卷模型,构造的量子门旋转角度和量子非门变异率根据种群的聚散程度和进化状态自适应调节,在保证算法寻优能力的同时,加快了算法的收敛速度。最后对经典背包问题和实际生产数据进行了仿真,结果表明,所提的模型和算法可行且有效。 To solve the problem of coils merging in the cold rolling mill, a multi-objective and multi-knapsack model was established by considering the merging mode and the maximal available coils weight. The objective of this model was to maximize the number of merging and to minimize the deviation of the coil's weight simultaneously. Based on this model, firstly the system clustering method was used to acquire the classification of coils and the knapsack model's center so as to simplify the model's computation. Then a self-adaptive quantum genetic algorithm was developed to solve the coils merging model, in which the quantum door revolving gate angle and no-door mutation probability were adaptively adjusted according to the state of population's concentration-dispersion and evolution. The designed self-adaptive adjustment mechanism ensured the algorithm's search ability and speeded up the convergence at the same time. Finally, the simulation results using the classical knapsack problem and practical production data showed that the proposed model and algorithm were feasible and effective.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2009年第7期1421-1429,共9页 Computer Integrated Manufacturing Systems
基金 国家863计划资助项目(2007AA04Z156)~~
关键词 冷轧机组 多背包问题 系统聚类法 自适应量子遗传算法 cold rolling mill multi-knapsack problem system clusters method adaptive quantum genetic algorithm
  • 相关文献

参考文献20

二级参考文献34

共引文献292

同被引文献30

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 2Okano H, Davenport A J, Trumbo M, Reddy C, Yoda K, Amano M. Finishing line scheduling in the steel industry. IBM Journal of Research and Development, 2004, 48(5-6): 811-830. 被引量:1
  • 3Wang L. Research on Production Planning and Dynamic Scheduling for the Whole Process of Cold Rolling and Its Application [Ph.D. dissertation], Dalian University of Technology, China, 2011. 被引量:1
  • 4赵君, 刘全利, 王伟. 冷轧生产调度模型及算法.自动化学报, 2008, 34(5): 565-573. 被引量:1
  • 5Wang L, Zhao J, Wang W. Order planning model and algorithm for whole process of cold rolling process. ICIC Express Letters, 2009, 3(3): 657-662. 被引量:1
  • 6Likas A, Vlassis N, Verbeek J. The global K-means clustering algorithm. Pattern Recognition, 2003, 36(2): 451-461. 被引量:1
  • 7El-Sonbaty Y, Ismall M A, Farouk M. An efficient density based clustering algorithm for large databases. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, USA: IEEE, 2004. 673-677. 被引量:1
  • 8Wan L, Yang J. Advanced split BIRCH algorithm in reconfigurable network. Journal of Networks, 2013, 8(9): 2056-2060. 被引量:1
  • 9Agrawal R, Gehrke J, Gunopulos D, Paghavan P. Automatic subspace clustering of high dimensional data. Data Mining and Knowledge Discovery, 2005, 11(1): 5-33. 被引量:1
  • 10Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部