期刊文献+

面向大规模信息网络的高效自适应聚类算法 被引量:3

Efficient Adaptive Clustering Algorithm for Large Scale Information Network
下载PDF
导出
摘要 为解决传统聚类算法在处理大规模信息网络中时间开销过大的问题,基于大规模信息网络的统计学特性,提出了一种将信息网络拓扑结构进行"分而治之"的思想,有效地减少了聚类问题规模和时间开销,并保持了相当的聚类效果。主要贡献包括:提出按照聚类影响力排名来对整个信息网络进行分层切割,然后分别聚类的思想;按照特定信息网络统计学意义上的结构特性,如信息网络的富人集团特性和分层社区结构特性,设计了一套将信息网络进行层次划分的粗略方案,并通过实验证明了其具有一定的合理性;提出了迭代的层级间聚类融合算法,可以实现不同层次聚类的融合。实验表明,该算法在兼具较好聚类效果的同时,非常明显地减少了运算开销。 The time cost of traditional clustering algorithm is too high when using it to large scale information net-work. To solve this issue, based on the statistical characteristic of information network, this paper proposes a novel“divide and conquer”strategy on information network, which reduces the clustering size and time cost heavily without efficiency loss. The main contribution of this paper is three folds:(1) It proposes the idea that clustering in different layers separately after dividing the whole information network into several layers according to the clustering contribution rank;(2) Based on the rich-club phenomenon and hierarchical community feature which exists in information network, it designs the blueprint of layer dividing method of clustering algorithm;(3) It presents an iteration procedure to merge clusters in different layers. The experimental results show that the proposed algorithm has good clustering effect and can reduce time cost.
出处 《计算机科学与探索》 CSCD 2014年第4期406-416,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Grant No.61103043 国家"十二五"科技支撑计划项目Grant No.2012BAG04B02 武汉大学软件工程国家重点实验室开放基金项目Grant No.SKLSE2012-09-26~~
关键词 信息网络 自适应聚类 信息层 ADAPTIVE CLUSTERING (AC) information network information layer
  • 相关文献

参考文献2

二级参考文献33

  • 1[1]Gibson D,Kleinberg J,Raghavan P.Inferring web communities from link topology[A].Proceedings of the 9th ACM Conference on Hypertext and Hypermedia[C].1998.225-234. 被引量:1
  • 2[2]Flake G W,Lawrence S R,Giles C L,et al.Self-organization and identification of web communities[J].IEEE Computer,2002,35 (3):66-71. 被引量:1
  • 3[3]Adamic A L,Adar E.Friends and neighbors on the web[J].Social Networks,2003,25 (3):211-130. 被引量:1
  • 4[4]Shen-Orr S,Milo R,Mangan S,et al.Network motifs in the transcriptional regulation network of Escherichia coli[J].Nature Genetics,2002,31 (1):64-68. 被引量:1
  • 5[5]Milo R,Shen-Orr S,Itzkovitz S,et al.Network motifs:simple building blocks of complex networks[J].Science,2002,298 (5594):824-827. 被引量:1
  • 6[6]Holme P,Huss M,Jeong H.Subnetwork hierarchies of biochemical pathways[J].Bioinformatics,2003,19 (4):532-538. 被引量:1
  • 7[7]Girvan M,Newman M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci,2001,99 (12):7 821-7 826. 被引量:1
  • 8[8]Gleiser P,Danon L.Community structure in jazz[J].Advances in Complex Systems,2003,6 (4):565-573. 被引量:1
  • 9[9]Garey M R,Johnson D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].San Francisco:W.H.Freeman Publishers,1979. 被引量:1
  • 10[10]Scott J.Social Network Analysis:A Handbook[M].2nd ed.London:Sage Publications,2002. 被引量:1

共引文献85

同被引文献20

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部