期刊文献+

非负矩阵分解在微阵列数据分类和聚类发现中的应用 被引量:5

Application of non-negative matrix factorization in microarray data classification and clustering discovery
下载PDF
导出
摘要 基因芯片是微阵列技术的典型代表,它具有高通量的特性和同时检测全部基因组基因表达水平的能力。应用微阵列芯片的一个主要目的是基因表达模式的发现,即在基因组水平发现功能相似,生物学过程相关的基因簇;或者将样本分类,发现样本的各种亚型。例如根据基因表达水平对癌症样本进行分类,发现疾病的分子亚型。非负矩阵分解NMF方法是一种非监督的、非正交的、基于局部表示的矩阵分解方法。近年来这种方法被越来越多地应用在微阵列数据的分类分析和聚类发现中。系统地介绍了非负矩阵分解的原理、算法和应用,分解结果的生物学解释,分类结果的质量评估和基于NMF算法的分类软件。总结并评估了NMF方法在微阵列数据分类和聚类发现应用中的表现。 A typical representation of microarray technologies is DNA microarray, which has ability to simultaneously measure the expression levels of all genes in genome due to its property of highthroughput. One of the main objectives of microarrays assay is gene expression pattern discovery, that is, not only the discovery of gene clusters where genes have similar functions or relative biological process, but also the discovery of sample subtypes which possess the intrinsic features, such as cancer subtypes. Non-negative matrix factorization is an unsupervised, non-orthogonal, local-based representa- tion methodology used into microarrays data analysis, especially in classification analysis and clustering discovery. The typical algorithm and some improved algorithms of NMF are introduced, and the biologi- cal annotation of factorizalion, the assessment of classification outcomes and the existing implementations based-on NMF are systematically summarized. Finally, the performance of NMF in recent microarray experiments is given.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第7期1389-1397,共9页 Computer Engineering & Science
基金 广东省高校人才引进专项基金资助项目(2011)
关键词 非负矩阵分解 微阵列数据 分类分析 聚类发现 non-negative matrix faetorization microarray data classification analysis clustering discovery
  • 相关文献

参考文献55

  • 1史蒂夫·拉塞尔,莉萨·梅多斯,罗斯林·拉塞尔.生物芯片技术与实践(中文版)[M].肖华胜,张春秀,武雪梅,等译.北京:科学出版社,2010. 被引量:1
  • 2黄德双著..基因表达谱数据挖掘方法研究[M].北京:科学出版社,2009:462.
  • 3石金龙,骆志刚.非负矩阵分解算法及其在生物信息学中的应用研究[J].计算机工程与科学,2010,32(8):117-123. 被引量:6
  • 4Jemal A, Bray F, Center M M, et al. Global cancer statistics [J]. CA CancerJ Clin, 2011, 61(2):69-90. 被引量:1
  • 5Valk P J M, Verhaak R G W, Beijen M A. Prognostically useful gene-expression profiles in acute myeloid leukemia[J]. The New England Journal of Medicine, 2004, 350: 1617- 1628. 被引量:1
  • 6Barrier A, Boelle P-Y, Roser F, et al. Stage ii colon cancer prognosis prediction by tumor gene expression profiling[J]. Journal of Clinical Oncology, 2006, 24(29):4685-4691. 被引量:1
  • 7Wang Y, Jatkoe T, Zhang Y, et al. Gene expression profiles and molecular markers to predict recurrence of dukesb colon cancer[J]. Journal of Clinical Oncology, 2004, 22(9):1564- 1571. 被引量:1
  • 8The Cancer Genome Network. Integrated genomic analyses of ovarian carcinoma[J]. Nature, 2011, 474 (7353) : 609- 615. 被引量:1
  • 9Taylor B S,Schultz N, Hieronymus H, et al. Integrative ge nomic profiling of human prostate cancer[J]. Cancer Cell, 2010, 18(1):11-22. 被引量:1
  • 10Sorlie T, Perou C M, Tihshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. PNAS, 2001, 98 (19) : 10869- 10874. 被引量:1

二级参考文献61

  • 1Yeung M K, Tegner J, Collins J J. Reverse Engineering Gene Networks Using Singular Value Decomposition and Robust Regression[J]. Proceedings of the National Academy of Sciences, 2002,99(9) : 6163-6168. 被引量:1
  • 2Yeung K Y, Ruzzo W L. Principal Component Analysis for Clustering Gene Expression Data [J]. Bioinformatics, 2001, 17(9):763-774. 被引量:1
  • 3Liebermeister W, IAnear Modes of Gene Expression Determined by Independent Component Analysis[J]. Bioinformatics, 2002,18(1) : 51-60. 被引量:1
  • 4Liao J C, Boscolo R, Yang Y L, et al. Network Component Analysis: Reconstruction of Regulatory Signals in Biological Systems[J]. Proceedings of the National Academy of Sciences, 2003,100(26) : 15522-15527. 被引量:1
  • 5Lee D D,Seung H S. Learning the Parts of Objects by Nonnegative Matrix Factorization[J]. Nature, 1999,401 (6755) : 788-791. 被引量:1
  • 6Paatero P, Tapper U. Positive Matrix Factorization: A Nonnegative Factor Model with Optimal Utilization of Error Estimates of Data Values[J]. Environmetries, 1994,5 ( 2 ) : 111- 126. 被引量:1
  • 7Paatero P. I.east Squares Formulation of Robust Non-negative Factor Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997,37 ( 1 ) : 22-35. 被引量:1
  • 8Lee D D, Seung H S. Unsupervised Learning by Convex and Conic Coding[J]. Advances in Neural Information Processing Systems, 1997,1997(9) : 515-521. 被引量:1
  • 9Lee D D,Sebastian S H. Algorithms for Non-negative Matrix Factorization[J]. Advances in Neural Information Processing Systems, 2001,2001 (13):556-562. 被引量:1
  • 10Li S Z, Hou Xinwen, Zhang Hongjiang, et al. Learning Spatially Localized, Parts-Based Representation [C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition, 2001 : 207-212. 被引量:1

共引文献5

同被引文献32

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部