期刊文献+

DiffRank:一种新型社会网络信息传播检测算法 被引量:17

DiffRank:A Novel Algorithm for Information Diffusion Detection in Social Networks
下载PDF
导出
摘要 信息传播检测是给定一个传播网络,如何选择最有效的节点集合作为观察节点或部署传感器,以尽早尽快检测到网络中传播的信息,这对于社会网络中的意见领袖挖掘、谣言传播检测、舆情监控等应用具有重要意义.文中结合网络结构特点、节点内容属性、历史传播数据等信息,提出了一个基于随机游走模型的传播能力排序算法DiffRank,根据该算法的结果选择传播能力最强的top-k个节点作为观察节点来检测网络中可能出现的信息传播.基于新浪微博真实数据的实验结果表明,与其他同类算法相比,DiffRank算法在检测覆盖率、检测时间和信息感染人数下降比率3个指标上,都优于同类算法.在算法的可扩展性方面,DiffRank算法更加适用于并行或分布式计算,可扩展性更好. Given a social network,information diffusion detection can be modeled as selecting aset of nodes as observations to detect the spreading of information or rumors as quickly as possible.Itcan be well applied to fields like opinion leader detection,rumor detection,and public security.Incorporating network structure,node attribute and history information cascades,we propose arandom walk based algorithm DiffRank to sort nodes according to their diffusion ability,thenchoose the top-犽nodes on the list as observations to detect information diffusion.Experiments onreal dataset of Sina Weibo show that DiffRank outperforms other algorithms with respect toinformation cascades coverage ratio,detection time and reduction of infected population.Besides,DiffRank can be implemented easily in distributed or parallel computing environment,achievinggood scalability.
出处 《计算机学报》 EI CSCD 北大核心 2014年第4期884-893,共10页 Chinese Journal of Computers
基金 国家“八六三”高技术研究发展计划项目基金(2009AA012201)资助~~
关键词 社会网络 信息传播 传播检测 随机游走模型 社会计算 social networks information diffusion diffusion detection random walk model social computing
  • 相关文献

参考文献2

二级参考文献35

  • 1Shen X,Boutell M,Luo J,Brown C.Multi-label machine learning and its application to semantic scene classification//Proceedings of the 2004 International Symposium on Electronic Imaging.San Jose,California,USA,2004:18-22. 被引量:1
  • 2Hullermeier E,Furnkranz J,Cheng W,Brinker K.Label ranking by learning pairwise preferences.Artificial Intelligence,2008,172(16):1897-1916. 被引量:1
  • 3Read J.A pruned problem transformation method for multi-label classification//Proceedings of the New Zealand Computer Science Research Student Conference.New Zealand,2008:143-150. 被引量:1
  • 4Tsoumakas G,Vlahavas I.Random k-labelsets:An ensemble method for multilabel classification//Proceedings of the ECML.Warsaw,Poland,2007:406-417. 被引量:1
  • 5Schapire R,Singer Y.BoosTexter:A boosting-based system for text categorization.Machine Learning,2000,39(2):135-168. 被引量:1
  • 6Zhang M,Zhou Z.Multilabel neural networks with applications to functional genomics and text categorization.IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351. 被引量:1
  • 7Zhang M,Zhou Z.A k-nearest neighbor based algorithm for multi-label classification//Proceedings of the IEEE International Conference on Granular Computing.Beijing,China,2005,2:718-721. 被引量:1
  • 8Clare A,King R.Knowledge discovery in multi-label phenotype data//Proceedings of the ECML/KDD.Freiburg,Germany,2001:42-53. 被引量:1
  • 9Tsoumakas G,Dimou A,Spyromitros E,Mezaris V,Kompatsiaris I,Vlahavas I.Correlation-based pruning of stacked binary relevance models for multi-label learning//Proceedings of the ECML/PKDD.Slovenia,2009:101. 被引量:1
  • 10Page L,Brin S,Motwani R,Winograd T.The pagerank citation ranking:Bringing order to the web//Proceedings of the ASIS.Orlando,FL,1998:161-172. 被引量:1

共引文献99

同被引文献173

引证文献17

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部