期刊文献+

基于阈值的社交网络影响力最大化算法 被引量:22

Threshold-Based Heuristic Algorithm for Influence Maximization
下载PDF
导出
摘要 对于社交网络影响力最大化问题,Kemple和Kleinberg提出了有较好影响范围的贪心算法,但是KK算法的复杂度非常高,并不实用.利用线性阈值模型提出了一种基于节点激活阈值的启发式算法.它综合考虑了节点之间的影响力和节点的激活阈值,根据每个节点在激活过程中动态变化的阈值来计算PIN值,启发过程中,每一次都选取PIN最大的节点作为种子节点进行激活,贪心阶段中再贪心地挑选那些具有最大影响范围增量的节点作为种子节点.通过实验表明,即使在完全不采用贪心阶段,该算法的激活范围与KK算法都非常接近,而算法的复杂度则相对非常小.实验还表明该算法相对于HPG算法在相同启发因子c的情况下具有更大的激活范围. Influence maximization is a problem of finding a subset of nodes in a social network that can maximize the spread of influence. This optimization problem of influence maximization is proved NP- hard. Kemple and Kleinberg proposed a natural climbing-hill greedy algorithm that chooses the nodes which could provide the best marginal influence (KK algorithm). KK algorithm has large spread of influence, but is too costly for large social network. We propose a threshold-based heuristic algorithm (TBH) for social network influence maximization based on activation threshold of nodes. The algorithm computes potential influenced nodes (PIN) according to dynamically changing activation threshold of nodes in activating process. In heuristic phase, we select the nodes with maximal PIN as seed nodes. Then, in greedy phase, we greedily select the nodes having maximal margin gain of influence as seed nodes. Our experiments demonstrate that, even without the greedy phase, the performance of our algorithm is close to that short running time. same heuristic factor c experimental results of KK algorithm, and our algorithm has relatively very also show that our algorithm outperforms HPG with the
作者 陈浩 王轶彤
出处 《计算机研究与发展》 EI CSCD 北大核心 2012年第10期2181-2188,共8页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(61033010)
关键词 社交网络 影响力最大化 启发式算法 贪心算法 TBH social network influence maximization heuristic algorithm greedy algorithm TBH
  • 相关文献

参考文献8

  • 1Kernpe D, Kleinberg J, Tardos E. Maximizing the spread of influence in a social network [C] //Proe of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York, ACM, 2003:137-146. 被引量:1
  • 2田家堂,王轶彤,冯小军.一种新型的社会网络影响最大化算法[J].计算机学报,2011,34(10):1956-1965. 被引量:44
  • 3Chen Wei, Wang Yajun, Yang Siyu. Efficient influence maximization in social networks [C] //Proc of the 15th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2009:199-208. 被引量:1
  • 4Young H P, Blume L, Durlauf S. The diffusion of innovations in social networks [M]. The Economy as a Complex System Ⅲ. New York: Oxford University Press, 2003:1-19. 被引量:1
  • 5Watts D J. A simple model of global cascades con random networks[J]. National Academy of Sciences, 2002: 99(9): 5766-5571. 被引量:1
  • 6Goldenberg J, Libai B, Muller E. Talk of the network: A complex systems look al the underlying process of word-of mouth [J]. Marketing Letters, 2001, 12(3): 211-223. 被引量:1
  • 7Michael M, Francesco 15, Carlos C. Sparsification of Influencc Networks [C] //Proc of the 171h ACM SIGKDD In: Conf on Knowledge D{scovery and Data Mining. New York: ACM, 2011, 529- 537. 被引量:1
  • 8Manuel G, Jure i., Andreas K. Inferring networks of diffusion and influence[C]//Proc of the 16th ACM SIGKI)D lnt Conf on Knowledge Discovery and Data Mining. New: York: ACM, 2010:1019-1028. 被引量:1

二级参考文献11

  • 1Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence in a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003: 137-146. 被引量:1
  • 2Chen Wei, Wang Ya Jun, Yang Si Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis covery and Data Mining. Paris, France, 2009:199 208. 被引量:1
  • 3Young H P. The diffusion of innovations in social net works//Blume L, Durlauf S. The Economy as a Complex System III. USA: Oxford University Press, 2003:1-19. 被引量:1
  • 4Watts D J. A simple model of global cascades on random net works. National Academy of Sciences, 2002, 99(9): 5766- 5571. 被引量:1
  • 5Goldenberg J, Libai B, Muller E. Talk of the network: A complex systems look at the underlying process of word-of- mouth. Marketing Letters, 2001, 12(3): 211-223. 被引量:1
  • 6Estevez Pablo A, Vera Pablo, Saito Kazumi. Selecting the most influential nodes in social networks//Proceedings of the International Joint Conference on Neural Networks. Orlando, Florida, USA, 2007:2397-2402. 被引量:1
  • 7Suri N Rama, Narahari Y. Determining the top k nodes in social networks using the shapely value (Short Paper)//Proceedings of the 7th International Joint Con{erence on Autono mous Agents and Multiagent Systems. Estoril, Portugal, 2008:1509-1512. 被引量:1
  • 8Wang YiTong, Feng XiaoJun. A potential-based node selection strategy for influence maximization in a social network//Proceedings of the 5th International Conference on Advanced Data Mining and Applications. Bering, China, 2009: 350-361. 被引量:1
  • 9Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media//Proceedings of the 28th International Conference on Human Factors in Computing Systems. Atlanta, USA, 2010: 1361 -1370. 被引量:1
  • 10Sun Shi-Wei, Ling Lun-Jiang, Zhang Nan, Li Guo-Jie, Chen Run-Sheng. Topological structure analysis of the proteinprotein interaction network in budding yeast. Nucleic Acids Research, 2003, 31(9): 2443-2450. 被引量:1

共引文献43

同被引文献105

引证文献22

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部