期刊文献+

移动社会网络中基于投票的影响力节点发现

Voting-Based Influence Node Discovery in Mobile Social Networks
下载PDF
导出
摘要 影响力最大化问题是发现网络中的若干节点作为种子节点,使得影响力在网络中的传播最大化.基于投票模型,研究了移动通信网络中的影响力最大化问题.首先,根据用户以及用户间的短消息交互信息生成一个社会关系图.其次,每个用户对其最亲密的邻居进行投票.由于每个用户只能投一票,而其最亲密的邻居可能有多个,按照用户的活跃度对这些亲密的邻居进行排序,并且只对最活跃的邻居进行投票.最后,按照用户得票数对影响力进行排序,并返回排名靠前的若干个.通过对真实的移动通信数据集进行分析验证本文算法的有效性. Influence maximization lies in identifying some seed nodes in a network and maximize the influence in the network. Based on voting model, this paper studies the influence maximi-zation in mobile communication. Firstly, a social relation graph based on mobile communica-tion data is constructed. Secondly, every user votes for its intimate neighbor. As each user has only one ballot and yet has more intimate neighbors, we sort these intimate neighbors according to their liveness, and vote for the most active one. Finally, we sort users according to their bal-lots acquired and return the users on the top of the list. Experiments on real mobile communi-cation dataset validates the effectiveness of the algorithm proposed.
作者 刘热
出处 《西安文理学院学报(自然科学版)》 2014年第3期113-117,共5页 Journal of Xi’an University(Natural Science Edition)
基金 无锡科技职业学院政产学研合作(共推互聘)科技项目:基于LEC评价法的SafeTrack智能化网络视频监控系统
关键词 移动社会网络 投票 影响力 贪婪算法 mobile social network ballot influence greedy algorithm
  • 相关文献

参考文献14

  • 1PENG S, YU S,YANG A. Smartphone mMalware and its propagation modeling : A Survey [ J ]. Communications Surveys & Tutorials, IEEE,2012,99 : 1 - 17. 被引量:1
  • 2罗彬,邵培基,罗尽尧,刘独玉,夏国恩.基于预算限制和客户挽留价值最大化的电信客户流失挽留研究[J].管理学报,2012,9(2):280-288. 被引量:11
  • 3GOMEZ - RODRIGUEZ M, LESKOVEC J, KRAUSE A. Inferring networks of diffusion and influence [ J ]. ACM Transac- tions on Knowledge Discovery from Data ( TKDD ), 2012,5 (4) : 21. 被引量:1
  • 4SINGER Y. How to win friends and influence people, truthfully : influence maximization mechanisms for social networks [ C ] //Proceedings of the fifth ACM international conference on Web search and data mining. ACM,2012:733 -742. 被引量:1
  • 5DOMINGOS P, RICHARDSON M. Mining the network value of customers[ C] //Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM ,2001:57 -66. 被引量:1
  • 6KEMPE D, KLEINBERG J ,TARDOS E. Maximizing the spread of influence through a social network[ C ]//Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,2003:137 -146. 被引量:1
  • 7CHEN W, WANG Y, YANG S. Efficient influence maximization in social networks [ C ]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM ,2009:199 -208. 被引量:1
  • 8LIU X, LI M, LI S, et al. IMGPU :GPU Accelerated Influence Maximization in Large-Scale Social Networks[ J ]. Communi- cation Surveys & Tutorials, IEEE ,2013,100:92 - 111. 被引量:1
  • 9KIMURA M, SAITO K, NAKANO R. Extracting influential nodes for information diffusion on a social network[ C ]//AAAI. 2007,7 : 1371 - 1376. 被引量:1
  • 10SAITO K ,KIMURA M, OHARA K, et al. Efficient discovery of influential nodes for SIS models in social networks [ J ]. Knowledge and information systems ,2012,30( 3 ) :613 - 635. 被引量:1

二级参考文献36

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部