期刊文献+

基于三维格子玻尔兹曼模型的海马结构MRI快速分割 被引量:5

Fast Segmentation of Hippocampus in MRI Based on 3-D Lattice Boltzmann Model
下载PDF
导出
摘要 目的快速准确地分割脑部MR图像的海马结构对早期诊断阿尔兹海默氏症(Alzheimer's disease,AD)具有重要价值。该文提出了一种快速和准确分割MRI三维海马结构的方法。该方法基于格子玻尔兹曼(Lattice Boltzmann,LB)模型,利用脑部MR图像的边缘信息和区域信息建立一个三维分割模型(3D-LB),直接在三维空间中通过碰撞和迁移过程提取海马结构。为验证3D-LB分割模型的精度和效率,该文对30组海马结构的测试图像进行分割实验,并与三维CV模型进行比较。实验结果显示,基于3D-LB模型的分割方法能有效地分割海马结构的测试图像,且相较于三维CV模型,精度更高,所耗时间更少,表明LB方法适用于三维海马结构的快速和精确分割。 Fast and accurate segmentation of hippocampus in brain MRI is significantly helpful for radiolo- gists to diagnose Alzheimer's disease (AD) in early stage. This paper proposes a novel Lattice Boltzmann (LB) method to realize the segmentation. This method uses the edge and regional information of hippocampus, establishes a three - dimension LB model and realizes segmentation through the acting process of particles" collision and trans- form. Comparison experiments were carried out to test the accuracy and efficiency of the novel LB method. The no- vel LB method was compared to the CV method in 30 composite volume hippocampus MR images. The results showed that the novel LB method could achieve better performance and higher computation efficiency. Hence the feasibility of the novel LB method for segmentation of hippocampus images was proven.
出处 《生物医学工程学进展》 CAS 2014年第1期1-7,共7页 Progress in Biomedical Engineering
基金 国家自然科学基金(No.61171146)资助项目
关键词 海马结构 三维格子玻尔兹曼(3D-LB)模型 阿尔兹海默氏症 Hippocampus, 3 - D Lattice Bohzmann (3 D - LB) Model, Alzheimer's disease
  • 相关文献

参考文献20

  • 1Husain M M, Garrett R K. Clinical diagnosis and manage- ment of Alzheimer's disease [ J ]. Neuroimaging Clinics of North America, 2005, 15(4) : 767 -777. 被引量:1
  • 2Dubois B, Feldman H H, Jacova C, et al. Research crite- ria for the diagnosis of Alzheimer's disease: revising the NINCDS - ADRDA criteria [ J ]. The Lancet Neurology, 2007, 6 ( 8 ) : 734 - 746. 被引量:1
  • 3Collins D L, Holmes C J, Peters T M, et al. Automatic 3 D model - based neuroanatomical segmentation [ J ]. Human Brain Mapping, 1995, 3(3): 190-208. 被引量:1
  • 4Fischl B, Salat D H, Busa E, et al. Whole brain segmen- tation: automated labeling of neuroanatomical structures in the human brain[J]. Neuron, 2002, 33(3) : 341 -355. 被引量:1
  • 5Heckemann R A, Hajnal J V, Aljabar P, et al. Automatic anatomical brain MRI segmentation combining label propa- gation and decision fusion [ J ]. Neuroimage, 2006, 33 (1): 115-126. 被引量:1
  • 6Babalola K O, Patenaude B, Aljabar P, et al. Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI[ M ]. Medical Image Computing and Computer - Assisted Intervention - MICCAI 2008. Springer Berlin Heidelberg, 2008 : 409 -416. 被引量:1
  • 7Aljabar P, Heckemann R A, Hammers A, et al. Multi - atlas based segmentation of brain images: atlas selection and its effect on accuracy[J]. Neuroimage, 2009, 46(3): 726 - 738. 被引量:1
  • 8Collins D L, Pruessner J C. Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion[J]. Neuroimage, 2010, 52(4): 1355- 1366. 被引量:1
  • 9Ashton E A, Berg M J, Parker K J, et al. Segmentation and feature extraction techniques, with applications to MRI head studies[ J]. Magnetic resonance in medicine, 1995, 33 ( 5 ) : 670 - 677. 被引量:1
  • 10Shen D, Moffat S, Resnick S M, et al. Measuring size and shape of the hippocampus in MR images using a de- formable shape model [ J ]. Neuroimage, 2002, 15 (2) : 422 - 434. 被引量:1

同被引文献19

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部