期刊文献+

海马体磁共振图像分割:基于先验信息的三维格子玻尔兹曼方法及其并行加速 被引量:5

Hippocampus MRI Parallel Segmentation Using Three Dimensions Lattice Boltzmann Model with Prior Information
下载PDF
导出
摘要 在脑部磁共振图像中分割海马体,快速准确地获得其体积变化情况,对于阿尔茨海默症等疾病的诊断具有重要意义。三维分割可利用图像在灰度和空间位置上的相关性,因此具有较高的准确率。该文提出了一种利用三维格子玻尔兹曼模型,结合形变模型曲面演化思想,以先验信息作为外力项,约束三维曲面演化的方法。为解决三维分割由于演化曲面复杂所带来的计算代价高的问题,分别在单GPU平台和双GPU平台上实现了方法的并行计算。为验证该文方法的准确性与效率,对20组采自ADNI数据库的阿尔茨海默症患者脑部磁共振图像进行分割实验。在保证分割精度的前提下,将原来需要132.43 s完成的分割,在单GPU平台上缩减至12.76 s,在双GPU平台上缩减至17.32 s,充分验证了格子玻尔兹曼方法可高度并行化的特点。 Getting volume change of hippocampus by segmenting on brain MRI is an important step in the diagnose of Alzheimer's disease and other brain disease. Three dimensional segmentation can make use of the correlation of image in gray and spatial position, so it has high accuracy. This paper proposes a novel three-dimensional lattice Boltzmann model combined with the surface evolution of deformable model and taking the prior information as an external force term to constrain the evolution of three dimensional surfaces. In order to solve the problem of high computational cost caused by 3 D segmentation, the parallelization of the method is programmed on single GPU platform and dual GPU platform. Comparison experiments were set to test the accuracy of segmentation and computational efficiency between the novel LB method and another method by using 20 real AD patient's MRI from ADNI. In ensuring the accuracy of the segmentation, the time can be reduced to 12.76 s on single GPU platform, and 17.32 s on dual GPU platform, contrasting 132.43 s on CPU platform. It fully validates the characteristics of lattice Boltzmann method which can be highly parallelized.
出处 《中国医疗器械杂志》 2018年第1期1-6,13,共7页 Chinese Journal of Medical Instrumentation
基金 国家自然科学基金(61675124 61171146) 上海市科委科技支撑计划(15441905400)
关键词 海马体 磁共振图像分割 三维格子玻尔兹曼方法 GPU并行计算 hippocampus MR image segmentation three-dimensional lattice Boltzmann method GPU parallel computing
  • 相关文献

参考文献1

二级参考文献20

  • 1Husain M M, Garrett R K. Clinical diagnosis and manage- ment of Alzheimer's disease [ J ]. Neuroimaging Clinics of North America, 2005, 15(4) : 767 -777. 被引量:1
  • 2Dubois B, Feldman H H, Jacova C, et al. Research crite- ria for the diagnosis of Alzheimer's disease: revising the NINCDS - ADRDA criteria [ J ]. The Lancet Neurology, 2007, 6 ( 8 ) : 734 - 746. 被引量:1
  • 3Collins D L, Holmes C J, Peters T M, et al. Automatic 3 D model - based neuroanatomical segmentation [ J ]. Human Brain Mapping, 1995, 3(3): 190-208. 被引量:1
  • 4Fischl B, Salat D H, Busa E, et al. Whole brain segmen- tation: automated labeling of neuroanatomical structures in the human brain[J]. Neuron, 2002, 33(3) : 341 -355. 被引量:1
  • 5Heckemann R A, Hajnal J V, Aljabar P, et al. Automatic anatomical brain MRI segmentation combining label propa- gation and decision fusion [ J ]. Neuroimage, 2006, 33 (1): 115-126. 被引量:1
  • 6Babalola K O, Patenaude B, Aljabar P, et al. Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI[ M ]. Medical Image Computing and Computer - Assisted Intervention - MICCAI 2008. Springer Berlin Heidelberg, 2008 : 409 -416. 被引量:1
  • 7Aljabar P, Heckemann R A, Hammers A, et al. Multi - atlas based segmentation of brain images: atlas selection and its effect on accuracy[J]. Neuroimage, 2009, 46(3): 726 - 738. 被引量:1
  • 8Collins D L, Pruessner J C. Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion[J]. Neuroimage, 2010, 52(4): 1355- 1366. 被引量:1
  • 9Ashton E A, Berg M J, Parker K J, et al. Segmentation and feature extraction techniques, with applications to MRI head studies[ J]. Magnetic resonance in medicine, 1995, 33 ( 5 ) : 670 - 677. 被引量:1
  • 10Shen D, Moffat S, Resnick S M, et al. Measuring size and shape of the hippocampus in MR images using a de- formable shape model [ J ]. Neuroimage, 2002, 15 (2) : 422 - 434. 被引量:1

共引文献4

同被引文献41

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部