期刊文献+

基于边缘和区域信息的接力型活动轮廓图像分割模型 被引量:3

A relay active contour model for image segmentation based on edge and region information
下载PDF
导出
摘要 针对用于图像分割的传统单一和组合活动轮廓模型对初始轮廓敏感或者不能处理灰度不均匀图像的问题,提出了一种综合图像的全局、局部等区域信息和边缘信息的新的组合活动轮廓模型。该模型首先将全局灰度拟合能量、局部灰度拟合能量进行线性组合,组合后的能量再与由边缘探测算子构造的长度能量组成新的能量项;然后根据能量主体变化规律调整组合权重,继而用其分成的两种组合活动轮廓模型先后对图像分割;最后利用高斯滤波函数对水平集函数正则化。同时提出了模型转换、停止准则,实现了模型的自动转换和自动停止。对人工合成图像和真实图像的数值实验表明,该模型对噪声、各种初始轮廓均具有较好的鲁棒性,并具备分割灰度不均匀图像的能力。 Seeing that a conventional single or combined active contour model for image segmentation is sensitive to initial contours and can not handle the images with inhomogeneous intensity information, the paper proposes a new relay active contour model (RACM) that combines edge information and region information. Firstly, the new model line- arly combines the local intensity fitting energy and the global intensity fitting energy, and then a new energy term is constructed by using the combined energy and an edge term which is made up of edge detection function. Secondly, the combined weight is adjusted according to the state of the evolution model, which can realize image segmentation with two combined active contours models one by one. At last, the Gaussion kernel function is used to regularize the level set function. The criteria for model conversion and stopping are proposed to implement the automatic con- version and automatical stop of a model. The results of the experiment on synthetic images and real images show the proposed model is robust to initial contours and noises, and can segment the images with inhomogeneous intensity information.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第4期421-429,共9页 Chinese High Technology Letters
基金 863计划(2009AA044001) 机器人技术与系统国家重点实验室开放研究(SKLRS-2010-MS-01)资助项目
关键词 活动轮廓模型 边缘探测函数 全局灰度 局部灰度 灰度不均匀 图像分割 active contours model, edge detection function, global intensity information, local intensity information, intensity inhomogeneity, image segmentation
  • 相关文献

参考文献16

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active con- tour models. Int Journal of Computer Vision, 1987, 1 (4) :321-331. 被引量:1
  • 2Caselles V, Kimmel R, Sapiro G. Geodesic active con- tours. International journal of computer vision, 1997. 22 (1) : 61-79. 被引量:1
  • 3Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17 (2) :158-175. 被引量:1
  • 4Li C M, Xu C Y, Gui C F, et al. Level set evolution without re-initialization: a new variational formulation. In : Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alami- tos, USA, 2005. 430-436. 被引量:1
  • 5Chan TF, Vese LA. Active contours without edges. IEEE Trans on Image Processing, 2001, 10(2) :266-277. 被引量:1
  • 6Li C M, Kao C Y, John C Fore. Minimization of region- scalable fitting energy for image segmentation. IEEE Trans on Image Processing, 2008, 17(10) :1940-1949. 被引量:1
  • 7Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition, 2010 (43) :1199-1206. 被引量:1
  • 8Zhang K H, Zhang L, Song H H, et al. Active contours with selective local or global segmentation: A new formu- lation and level set method. Image and Vision Compu- ting, 2010, 28(4):668-676. 被引量:1
  • 9刘秀平,常先堂,李治隆.一种基于边缘和区域信息的变分水平集图像分割方法[J].大连理工大学学报,2008,48(5):754-758. 被引量:8
  • 10何宁,张朋.基于边缘和区域信息相结合的变分水平集图像分割方法[J].电子学报,2009,37(10):2215-2219. 被引量:24

二级参考文献50

  • 1唐利明,何传江,申小娜.几何活动轮廓模型的多尺度扩散分割算法[J].计算机辅助设计与图形学学报,2007,19(5):661-666. 被引量:9
  • 2S Osher, J A Sethian.Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations [J]. Journal of Computational Physics, 1988,79( 1 ) : 12 - 49. 被引量:1
  • 3S Esodoglu, P Smereka. A variational formulation for a level set representation of multiphase flow and area preserving curvature flow[J]. Commun. Math. Sci, 2008,6(1) : 125 - 148. 被引量:1
  • 4T Chan, L Vese. Active contours without edges[ J]. IEEE Image Proc,2001,10(2) :266 - 277. 被引量:1
  • 5Li C,Xu C, Gui C,M D Fox. Level set evolution without reinitialization: A new variational formulation[ A]. IEEE International Conference on Computer Vision and Pattern Recognition, Vol. 1[ C]. San Diego: IEEE Computer Society Press,2005.430 - 436. 被引量:1
  • 6V Caselles, R Kimmel, G Sapiro. Geodesic active contours[ J]. International Journal of Computer Vision, 1997, 22 ( 1 ) : 61 - 79. 被引量:1
  • 7Zhao HK, T Chan, B Merriman, S Osher. A variational level-set approach to multiphase motion [ J ]. Journal of Computational Physics, 1996,127:179 - 195. 被引量:1
  • 8D Mumford, J Shah. Optimal approximation by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathemalics, 1989,42 (5) : 577 - 685. 被引量:1
  • 9R Malladi,J A Sethian,B C Vemuri. Shape modeling with front propagation: A level set approach[ J]. IEEE Trans on PMAI, 1995,17(2) : 158 - 175. 被引量:1
  • 10Han X, Xu CY, J L Prince. A topology preserving level set method for geomelric deformable models [ J ]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (6) :755 - 768. 被引量:1

共引文献78

同被引文献104

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 4Caselles V, Catte F, Coll T, et al. A geometric model for active contours in image processing[J]. Nurnerische Mathematic, 1993,66 (1) :1 - 31. 被引量:1
  • 5Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988,1 (4) : 321 - 331,. 被引量:1
  • 6Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1) : 61 - 79. 被引量:1
  • 7Chan T F, Vese L A. Active contours without edges[J]. IEEE Trans. on Image Processing, 2001, 10(2): 266-277. 被引量:1
  • 8Vese L A, Chan T F. A multiphase level set framework for im- age segmentation using the mumford and shah model[J]. Inter- national Journal of Computer Vision, 2002, 50(3) : 271 - 293. 被引量:1
  • 9Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy[C] // Proc. of the IEEE Confer- ence on Computer Vision and Pattern Recognition ( CVPR ) , 2007 : 1 - 7. 被引量:1
  • 10Li C, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Trans. on Image Processing, 2008, 17(10) : 1940 - 1949. 被引量:1

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部