期刊文献+

烤烟叶片色素含量的高光谱预测模型研究 被引量:13

Hyperspectral prediction model of flue-cured tobacco leaf pigment content
下载PDF
导出
摘要 研究烤烟叶片的高光谱曲线特征,探索建立烤烟色素含量的高光谱预测模型,以促进高光谱技术在现代烟草农业中的发展。采用大田试验,分析了不同光质条件下,烤烟叶片光谱的特征。利用相关分析方法,确定了21个光谱参数与色素含量的相关性,并建立了叶片色素含量的高光谱线性与非线性模拟方程。不同光质处理下,烟叶叶片光谱曲线相似,在可见光与近红外短波区域差异比较明显,而在近红外长波区域基本没有差异。光谱参数G_NDVI和TCARI分别与叶绿素、类胡萝卜素含量之间有较好的相关性,并建立了预测模型。经精度检验结果显示,模型能较好的预测烤烟色素含量。光谱参数G_NDVI和TCARI能有效检测烤烟色素含量,为高光谱技术在不同生态区域的应用提供理论依据。 Hyperspectral characteristics of tobacco leaves were analyzed with the objective to build hyperspectral monitoring models for pigment content in tobacco leaves. The development of hyperspectral techniques in modern tobacco agriculture was discussed. Hyperspectral characteristics of tobacco leaf with different light constitution were investigated. Relationship between 21 hyperspectral parameters and pigment content was analyzed by using relevance analysis. Hyperspectral parameter-based linear and nonlinear monitoring models for tobacco leaf pigment content estimation were built. Hyperspectral curves under different light quality were similar. Difference in visible and near-infrared shortwave regional was signiifcant, while there is little difference in the near-infrared wavelength. Spectral indices of G_NDVI and TCARI showed a close correlation with chlorophyll and carotenoid content, and their monitoring models were set up accordingly. These models were proved to be reliable for monitoring content of leaf pigment monitoring by the index of root mean square deviation (RMSE) and relative error (RE%). Results showed the availability of G_NDVI and TCARI in monitoring leaf pigment content , thus providing a theoretical basis for the application of hyperspectral technology in different ecological areas.
出处 《中国烟草学报》 EI CAS CSCD 北大核心 2014年第1期54-60,共7页 Acta Tabacaria Sinica
基金 中国烟草总公司浓香型特色优质烟叶开发(110201101001(TS-01))
关键词 烤烟 高光谱 色素含量 模型 tobacco hyperspectral data leaf pigment content model
  • 相关文献

参考文献23

二级参考文献115

共引文献275

同被引文献257

引证文献13

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部