摘要
针对多目标粒子群优化算法全局最优位置选取存在的缺陷和局部搜索能力弱的缺点,提出一种基于全局最优位置自适应选取与局部搜索的多目标粒子群优化算法MOPSO-GL。首先对Sigma法进行改进,引入拥挤距离机制,不再是粒子从档案中选择全局最优位置,而是档案成员从种群中选择合适的被引导粒子,引导种群均匀快速地向Pareto前沿飞行,提高了Pareto解的收敛性和多样性;其次当种群寻优能力减弱时,引入基于Skew Tent映射的变尺度全面搜索混沌优化策略对外部档案进行局部搜索,以提高算法的收敛性;最后通过与其他多目标优化算法的比较,结果表明MOPSO-GL具有更好的收敛性和分布性。
To deal with the problems of the strategies for selecting the global best position and the low local search ability,a multi-objective particle swarm optimization algorithm based on global best position adaptive selection and local search named MOPSO-GL was proposed.During the guiding particles selection in MOPSO-GL,the Sigma method and crowding distance of the particle in the archive were used and the archive member chose the guided particles in the swarm to improve the solution diversity and the swarm uniformity.Therefore,the population might get close to the true Pareto optimal solutions uniformly and quickly.Furthermore,the improved chaotic optimization strategy based on Skew Tent map was adopted,to improve the local search ability and the convergence of MOPSO-GL when the search ability of MOPSO-GL got weak.The simulation results show that MOPSO-GL has better convergence and distribution.
出处
《计算机应用》
CSCD
北大核心
2014年第4期1074-1079,共6页
journal of Computer Applications
基金
国家自然科学基金资助项目(50777066)
关键词
粒子群优化
多目标优化
全局最优位置
局部搜索
Particle Swarm Optimization (PSO)
multi-objective optimization
global best position
local search