期刊文献+

基于ε占优的自适应多目标粒子群算法 被引量:12

Adaptive multi-objective particle swarm optimizer based on ε dominance
原文传递
导出
摘要 针对粒子群算法求解多目标问题极易收敛到伪Pareto前沿(等价于单目标优化问题中的局部最优解),并且收敛速度较慢的问题,提出一种ε占优的自适应多目标粒子群算法(εDMOPSO).在εDMOPSO算法中,每个粒子的邻居根据粒子的运行动态地组建,且粒子的速度不由其邻居中运行最好的粒子来调整,而是由其所有邻居共同调整.同时,采用外部存档保存非劣解,并利用ε占优更新非劣解.模拟结果表明了εDMOPSO算法的有效性. Multi-objective particle swarm optimizers(MOPSOs) easily converge to a false Pareto front (the equivalent of a local optimum in single objective optimization), and converge slowly when applied to solve multi-objective optimization problems(MOPs). Therefore, this paper presents a self-adaptive multiobjective particle swarm optimizer based on e- domination(eDMOPSO) to handle MOPs. In the eDMOPSO algorithm, the neighborhood of each particle is dynamically changed in terms of the performances of the particles, and the velocity of each particle is not adjusted by the best performing particle in its neighborhood, but by all particles in its neighborhood including itself. Finally, external archive is employed to store the nondominated solutions and e-dominance is applied to update non-dominated solutions in external archive. Simulation results show the effectiveness of the proposed eDMOPSO algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2011年第1期89-95,共7页 Control and Decision
基金 广东省自然科学基金项目(9451806001002294) 深港创新圈基金项目(200810220137A) 贵州省教育厅社科基金项目(2007018)
关键词 多目标优化 粒子群算法 ε占优 动态邻居 multi-objective optimization: particle swarm optimizer: e-domination: dynamic neighbor topology
  • 相关文献

参考文献18

  • 1Yen G G, Lu H. Dynamic multiobjective evolutionary algorithm: Adaptive cell-based rank and density estimation[J]. IEEE Trans on Evolutionary Computation, 2003, 7(3): 253-274. 被引量:1
  • 2Kennedy J, Eberhart R. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Piscataway, 1995: 1942-1948. 被引量:1
  • 3Coello C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. Proc of IEEE Congress on Evolutionary Computation. Piscataway, 2002: 1051-1056. 被引量:1
  • 4郑金华著..多目标进化算法及其应用[M].北京:科学出版社,2007:276.
  • 5Hu X, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimizer[C]. Proc of the 2002 Congress on Evolutionary. Honolulu, 2002: 1677-1681. 被引量:1
  • 6Li X. A non-dominated sorting particle swarm optimizer for multi-objective optimization[C]. Genetic and Evolutionary Computation Conf. Chicago, 2003: 37-48. 被引量:1
  • 7Deb K, Pratap A, Agarwal S. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197. 被引量:1
  • 8Mostaghim M S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)[C]. IEEE Swarm Intelligence Symposium. Indianapolis, 2003: 26-33. 被引量:1
  • 9Huang V L, Suganthan P N, Liang J J. Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems[J]. Int J of Intelligent Systems, 2006, 21(3): 209-226,. 被引量:1
  • 10Mostaghim S, Teich J. The role of e-dominance in multi objective particle swarm optimization methods[C]. IEEE Congress on Evolutionary Computation. Canberra, 2003: 1764-1771. 被引量:1

二级参考文献3

共引文献31

同被引文献154

引证文献12

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部