期刊文献+

基于动态邻居和变异因子的多目标粒子群算法

Multi-objective particle swarm optimizer based on dynamic neighbor and mutation operator
下载PDF
导出
摘要 为了克服粒子群算法求解多目标问题极易收敛到伪Pareto前沿(等价于单目标优化问题中的局部最优解)和收敛速度较慢的缺陷,提出一种合并帕累托占优概念到动态邻居和变异因子的粒子群算法(particle swarmoptimizer based on dynamic neighbor topology and mutation operator,DNMPSO)来处理多目标优化问题(DNMMOP-SO),该算法也合并了外部存档技术来存储每次迭代产生的非劣解。模拟结果表明,提出的算法在多目标检测问题上要优于其他算法,因此,DNMMOPSO可以作为求解多目标优化问题的有效算法。 In order to conquer multi-objective particle swarm optimizers( MOPSOs) easily converge to a false Pareto front ( i. e. ,the equivalent of a local optimum in single objective optimization) ,and converge slowly,this paper combined the Pareto dominance to DNMPSO to deal with multi-objective problems,and emploied the external archive to store the non-dominated solution at each iteration. Simulation results show that the proposed algorithm is able to find better solutions compared against other algorithms. Consequently,DNMMOPSO can be used as an effective algorithm to solve multi-objective problems.
出处 《计算机应用研究》 CSCD 北大核心 2010年第10期3718-3720,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2008AA04A105) 山东省科技攻关项目(2009GG10001008) 遵义市科技局资助项目([2008]21) 贵州省教育厅社科项目(0705204)
关键词 动态邻居 多目标优化 粒子群算法 dynamic neighbor topology multi-objective optimization particle swarm optimizer
  • 相关文献

参考文献9

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]// Proc of IEEE International Conference on Neural Networks. 1995: 1942-1948. 被引量:1
  • 2COELLO C A C, LECHUGA M S. MOPSO:a proposal for multiple objective particle swarm optimization [ C ]//Proc of IEEE Congress on Evolutionary Computation. 2002 : 1051-1056. 被引量:1
  • 3COELLO C A C, PULIDO G T,LECHUGA M S. Handling multiple objectives with particle swarm optimization[ J ]. IEEE Trans on Evolutionary Computation ,2004,8( 3 ) :256-279. 被引量:1
  • 4SIERRA M R. Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance[ C]//Proc of the 3rd International Conference on Evolutionary Multi-Criterion Optimization. 2005:505-519. 被引量:1
  • 5MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimization ( MOPSO ) [ C ]//Proc of IEEE Swarm Intelligence Symposium. 2003:26-33. 被引量:1
  • 6YEN G G, LEONG W F. Dynamic multiple swarms in muhiobjective particle swarm optimization [ J ]. IEEE Trans on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2009,39 (4) : 890-911. 被引量:1
  • 7刘衍民,赵庆祯,隋常玲,邵增珍.一种基于动态邻居和变异因子的粒子群算法[J].控制与决策,2010,25(7):968-974. 被引量:32
  • 8REYES-SIERRA M, COELLO C A C. Multi-objective particle swarm optimizers : a survey of the state-of-the-art [ J ]. International Journal of Computational Intelligence Research ,2006,2 ( 3 ) :287-308. 被引量:1
  • 9DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist muhiobjectire genetic algorithm: NSGA-It [ J ]. IEEE Trans on Evolutionary Computation ,2002,6 (2) :182-197. 被引量:1

二级参考文献3

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部