期刊文献+

基于匹配规则的MapReduce任务调度模型 被引量:7

MapReduce tasks scheduling model based on matching rules
下载PDF
导出
摘要 基于开源云计算平台Hadoop的MapReduce是当前流行的分布式计算框架之一,然而其先进先出(FIFO)调度算法存在资源利用效率低下的问题。提出了一种基于资源匹配规则的MapReduce任务调度模型并进行了算法实现。该调度模型通过获取任务的资源需求与计算节点的剩余资源,依据资源的匹配性进行任务分配,提高了系统的资源使用效率。首先对MapReduce的调度过程进行建模,提出了资源及匹配度的量化定义和相应的计算公式;然后给出了资源测量的具体方法及算法实现;最后利用TeraSort、GrepCount和WordCount任务与FIFO调度算法进行实验对比,实验结果显示,最好的情况下,提出的调度模型任务完成时间减少了22.19%,而最差情况下的吞吐量也提高了25.39%。 MapReduce is one of the popular distributed computing frameworks based on an open source cloud platform named Hadoop.However,the First-In First-Out (FIFO) scheduling algorithm of MapReduce is inefficient in resources utilization.A new tasks scheduling model based on resources matching rules was proposed and implemented.After obtaining the tasks resources requirement and remainder resources on computing nodes,the model assigned tasks to computing nodes based on resources matching degree to improve the usage efficiency of system resources.First of all,the model for MapReduce scheduling was established,the quantitative definition of resources and matching degree were given,and the corresponding calculation formulas were put forward.Second,the specific methods of resource measurement and the implementation of the algorithm were introduced.Compared with FIFO scheduling algorithm on TeraSort,GrepCount and WordCount,the experimental results show that the proposed model reduces by 22.19% in tasks completion time in the best case,and increases by 25.39% in throughput even in the worst case.
出处 《计算机应用》 CSCD 北大核心 2014年第4期1010-1013,1018,共5页 journal of Computer Applications
基金 国家自然科学基金项目资助项目(61170135)
关键词 云计算 调度算法 HADOOP MAPREDUCE 先进先出 cloud computing scheduling algorithm Hadoop MapReduce First-In First-Out (FIFO)
  • 相关文献

参考文献13

  • 1VAQUERO L, RODERO-MERINO L, CACERES J, et al. A break in the clouds: towards a cloud definition [ J]. ACM SIGCOMM Computer Communication Review, 2008, 39(1) : 50 -55. 被引量:1
  • 2GHEMAWAT S, GOBIOFF H, LEUNG S-T. The Google file system [ C]//SOSP '03: Proceedings of the 19th ACM Symposium on Op- erating Systems Principles. New York: ACM, 2003:29 -43. 被引量:1
  • 3DEAN J, GHEMAWAT S. MapReduce: Simplified data processing on large clusters [J]. Communications of the ACM, 2008, 51( 1): 107 - 113. 被引量:1
  • 4BURROWS M. The Chubby lock service for loosely-coupled distrib- uted systems [ C]//OSDI '06: Proceedings of the 7th Symposium on Operating Systems Design and Implementation. Berkeley, CA: USENIX Association, 2006:335-350. 被引量:1
  • 5BERLI!)ISKA J, DROZDOWSKI M. Scheduling divisible MapRe- duce computations [ J]. Journal of Parallel and Distributed Compu- ting, 2011, 71(3):450-459. 被引量:1
  • 6SANDHOLM T, LAI K. Dynamic proportional share scheduling in Hadoop [ C]// JSSPP '10: Proceedings of the 15th International Conference on Job Scheduling Strategies for Parallel Processing, LNCS 6253. Berlin: Springer, 2010:110-131. 被引量:1
  • 7ZAHARIA M, BORTHAKUR D, SARMA J S, et al. Job schedu- ling for multi-user MapReduce clusters, UCB/EECS-2009-55 [ R]. Berkeley: University of California, 2009. 被引量:1
  • 8DOELITZSCHER F, SULISTIO A, REICH C, et al. Private cloud for collaboration and e-Learning services: from IaaS to SaaS [ J]. Computing, 2011, 91(1) : 23 -42. 被引量:1
  • 9O'MALLEY O. Terabyte sort on apache Hadoop [ EB/OL]. [ 2011O'MALLEY O. Terabyte sort on apache Hadoop [ EB/OL]. [ 2013-O1 - 08]. http://citeseerx, ist. psu. edu/viewdoc/download? doi = 10.1.1. 178. l187&rep = repl &type = pdf. 被引量:1
  • 10O'MALLEY OMURTHY A C. Winning a 60 second dash with a yellow elephant [ EB/OL]. [2013 -02 - 13]. http://mfotos, n/- NZc29ydGJlbmNobWFyaySvcmc. ZN-Yahoo2009. pdf. 被引量:1

同被引文献71

  • 1Apache Hadoop I EB/OL ]. ( 20~4-03-11 ). http ://hadoop. apache, org/. 被引量:1
  • 2Azzedin F. Towards a Scalable HDFS Architec- ture [ C ]//Proceedings of 2013 International Conference on Cc~l, laboration Technologies and Systems. New York, USA : ACM Press ,2013 : 155 -161. 被引量:1
  • 3Zaharia M,Konwinski A, Joseph A D, et al. Improving MapReduce Performance in Heterogeneous Environ- mentsICl// Proceedings of the 8th Symposium on Operating Systems' Design and Implementation. New York, USA .. ACM Press ,2008. 被引量:1
  • 4Zaharia M, Borthakur D, Sarma J S, et al. Delay Scheduling:A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling~ C ~//Proceedings of the 5th European Conference on Computer Systems. New York, USA : ACM Press : 2010 : 265 -278. 被引量:1
  • 5Chen Quan, Zhang Daqiang, Guo Minyi, et al. SAMR : A Self-adaptive MapReduce Scheduling Algorithm in Heterogeneous Environment ~ C 1//Proceedings of IEEE International Conference on Computer and Information Technology. Washington D. C. , USA : IEEE Press ,2010 : 2736-2743. 被引量:1
  • 6Sandholm T, Lai K. Dynamic Proportional Share Scheduling in Hadoop I C ]//Proceedings of the 15th Workshop on Job Scheduling Strategies for Parallel Processing. New York ,USA :ACM Press ,2010 : 110-131. 被引量:1
  • 7K.amal K,Anyanwu K. Scheduling Hadoop Jobs to Meet Deadlines E C]//Proceedings of the 2nd IEEE Inter- national Conference on Cloud Computing Technology and Science. Washington D. C., USA: IEEE Press, 2010:388-392. 被引量:1
  • 8Yong M,Garegrat N, Mohan S S. Towards a Resource Aware Scheduler in Hadoop I C l//Proceedings of ICWS' 09. Washington D. C. , USA : IEEE Press, 2009 : 102-109. 被引量:1
  • 9Patil S, Deshmukh S. Survey on Task AssignmentTechniques in Hadoop [ J 1. International Journal of Computer Applications ,2012,59 ( 14 ) : 15-18. 被引量:1
  • 10Dhok J, Maheshwari N, Varma V. Learning Based Opportunistic Admission Control Algorithm for MapReduce as a Service [ C l//Proceedings of the 3rd India Software Engineering Conference. New York, USA: ACM Press, 2010:153-160. 被引量:1

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部