期刊文献+

云计算模式下多租户软件最优调度方法仿真

Multi-tenant Software Optimal Scheduling Simulation in Cloud Computing Mode
下载PDF
导出
摘要 针对当前调度方法对多租户软件调度时,难以保证调度任务服务水平目标、租户间公平性,同时存在任务调度执行效率低的问题,提出基于蚁群优化的云计算模式下多租户软件最优调度方法。多租户软件最优调度机制引人占优资源熵以及占优资源权重的概念使任务调度到多租户需求和供给更为贴合的虚拟机上。在此前提下保障获取资源最少的租户优先获得任务调度,并根据租户的资源使用情况,以最大化全局占优资源熵为目标构建最优调度模型。采用蚁群算法对最优调度模型进行求解,对调度方案可行解添加不同信息素,使得多租户调度服务水平目标、调度执行效率、租户间公平性等综合需求达到最优,即最优解。实验结果表明,所提方法能够保证调度任务服务水平目标、租户间公平性,且有效提高了任务调度执行效率。 This paper presents an optimal scheduling method for multi-tenancy software in cloud computing mode based on ant colony optimization. Firstly, the conception about dominant resource entropy and dominant resource weight was introduced into multi-tenancy software optimal scheduling mechanism so that tasks could be dispatched on the virtual machine that multi-tenancy demand was more appropriate for supply. Based on this premise, the tenant with the least resource was guaranteed to obtain task scheduling preferentially. According to tenant's resource usage, the maximized global dominant resource entropy was used to build the optimal scheduling model. Moreover, the ant colony algorithm was used to solve the optimal scheduling model and added different pheromone on the feasible solu- tion of scheduling scheme. Thus, multi-tenancy scheduling service level, scheduling execution efficiency, fairness a- mong tenants and other integrated demands could be optimized, namely the optimal solution. Simulation results show that the proposed method can guarantee the service level of scheduling task and fairness. Meanwhile, it effectively im- proves the efficiency of task scheduling.
作者 杨梅芳 YANG Mei-fang(Henan University Puyang Institute of Engineering,Puyang Henan 457000,Chin)
出处 《计算机仿真》 北大核心 2018年第7期447-451,共5页 Computer Simulation
基金 云计算下高职教育信息化建设研究(2014GGJS-292)
关键词 云计算模型 多租户 软件 最优调度 蚁群算法 Cloud computing model Multi-tenancy software Optimal scheduling Ant colony algorithm
  • 相关文献

参考文献10

二级参考文献72

  • 1郭成城,晏蒲柳.一种异构Web服务器集群动态负载均衡算法[J].计算机学报,2005,28(2):179-184. 被引量:72
  • 2邓晓衡,卢锡城,王怀民.iVCE中基于可信评价的资源调度研究[J].计算机学报,2007,30(10):1750-1762. 被引量:14
  • 3Mell P, Grance T. The NIST definition of cloud computing [ J ]. Com- munications of the AGM ,2010,53 ( 6 ) :50. 被引量:1
  • 4EC2[ EB/OL]. [2014-10-30]. http://aws, amazon, com/ec2/. 被引量:1
  • 5App engine [ EB/OL]. [ 2014-10- 30 ]. http ://code. google, com/ap- pengine/. 被引量:1
  • 6Azure [ EB/OL ]. [ 2014-10- 30 ]. http ://www. microsoft, com/win- dowsazure/. 被引量:1
  • 7Sun Meng, Gu Weidong, Zhang Xinchang, et al. A matrix transforma- tion algorithm for virtual machine placement in cloud [ C ]//Proc of the 12th IEEE International Conference on Trust, Security and Privacy in.Computing and Communications. 2013 : 1778-1783. 被引量:1
  • 8Lee Zhongyuan, Wang Ying, Zhou Wen. A dynamic priority scheduling algorithm on service request scheduling in cloud computing[ C ]//Proc of International Conferenceon on Electronic and Mechanical Enginee- ring and Information Technology. 2011:4665-4669. 被引量:1
  • 9Gao Yongqiang, Guan Haibing, Qi Zhengwei, et al. A muhi-objective ant colony system algorithm for virtual machine placement in cloud computing[ J]. Journal of Computer and System Sciences,2013, 79 ( 8 ) : 1230-1242. 被引量:1
  • 10Cardosa M, Korupolu M, Singh A. Shares and utilities based power consolidation in virtualized server environments [ C ]//Proc of IFIP/ IEEE International Symposium on Integrated Network Management. 2009 : 327 - 334. 被引量:1

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部