期刊文献+

基于GHF高斯粒子滤波的检测前跟踪算法 被引量:1

Track-before-detect algorithm based GHF Gaussian particle filter
原文传递
导出
摘要 针对粒子滤波存在粒子退化,会导致检测前跟踪(TBD)算法的检测和跟踪性能下降这一不足,提出了一种基于高斯-哈密顿滤波(GHF)高斯粒子滤波的TBD算法.该算法基于高斯粒子滤波,采用GHF算法构造的重要性密度函数采样连续出现粒子,考虑了最新的量测信息,采样粒子更逼近于真实的后验概率密度,克服了粒子退化问题.仿真结果表明:与基本TBD算法相比,所提出的TBD算法提高了对目标的检测和跟踪性能. As the particle degeneracy problem in the particle filter,the detecting and tracking performance of track-before-detect(TBD)algorithm based on the particle filter descended.Therefore, the TBD algorithm based Gaussian-Hermite filter(GHF)Gaussian particle filter(GPF)was proposed.Based the GPF,the continue particles could be more approach to the real true posterior probability distribution including latest measuring information,which was sampled from the important density function based on the GHF.The experimental results show that the performance of detecting and tracking of targets by the proposed TBD algorithm is superior to the standard TBD algorithm.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期23-27,32,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61179014 60872156)
关键词 检测前跟踪 粒子滤波 粒子退化 高斯粒子滤波 重要性密度函数 高斯-哈密顿滤波 track-before-detect(TBD) particle filter particle degeneracy Gaussian particle filter(GPF) important density function Gaussian-Hermite filter(GHF
  • 相关文献

参考文献2

二级参考文献9

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978.. 被引量:1
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25. 被引量:1
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995. 被引量:1
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356. 被引量:1
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997. 被引量:1
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com. 被引量:1
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000. 被引量:1
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,. 被引量:1

共引文献80

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部