摘要
设H是有限群G的子群, K/L是G的任一非Frattini主因子.如果对每一满足L≤A<B≤K且A是B的极大子群的子群对(A,B),都有HA=HB或者H∩A=H∩B,则称H是G的∑*-嵌入子群.通过有限群G的某些子群的∑*-嵌入性,给出了一些有限群G的正规子群为可解群的一些判别条件,推广了已有的一些结论.
Let H be a subgroup of a finite group G and K/L be a non-Frattini chief factor of G. If HA = HB or H∩A=H∩B for each pair (A,B) with A a maximal subgroup of B and L≤A〈B≤K, then H is said to be a E*- embedded subgroup of G. Some new criteria for a normal subgroup in a finite group to be solvable are obtained based on the assumption that some subgroups are E*-embedded subgroups of G and some known results are generalized.
出处
《应用数学与计算数学学报》
2014年第1期78-85,共8页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(11071155)
上海市教育委员会重点学科建设资助项目(J50101)