期刊文献+

用增生映射的理论研究一类椭圆边值问题解的存在性 被引量:4

Study on the Existence of Solution of Elliptic Boundary Value Problems by Using Theories of Accretive Operators
下载PDF
导出
摘要 受非线性增生映射值域的扰动定理的启发,研究了非线性边值问题(@)在Lp(Ω),1<P<+∞中解的存在性.其中f∈Lp(Ω),1<p<+∞给定,g:Ω×R→R满足Caratheodory条件.本文把Gupta和Hess所研究的非线性议程加以推广,即在议程中增加了这一项,并把解的存在性的讨论由L2(Ω)窨推广到LP(Ω),1<p<+∞空间中。 This paper. stimulated by the perturbation results on sums of ranges of nonlinear accretive operators, studies the abstract results on the existence of a solution u∈Lp (Ω) under some conditions of thenonlinear boundary value problem:wheref∈Lp(Ω),1<p<+∞is given, g:Ω×R→R satisfies Caratheodory's conditions. Our results areextensions of Gupta and Hess in the sense that we insert into equation (@) and discuss equation(@) in more general space Lp(Ω), 1<p<+∞instead of L2(Ω).
作者 魏利
出处 《应用泛函分析学报》 CSCD 2000年第1期46-57,共12页 Acta Analysis Functionalis Applicata
基金 河北省自然科学基金!19706
关键词 增生映射 非线性方程 椭圆边值问题 存在性 accretive mapping demi-continuous mapping nonlinear equations
  • 相关文献

参考文献1

  • 1Haim Brezis. Integrales convexes dans les espaces de Sobolev[J] 1972,Israel Journal of Mathematics(1-2):9~23 被引量:1

同被引文献21

  • 1魏利.带扰动的极大单调算子的映射定理[J].河北师范大学学报(自然科学版),1996,20(2):12-14. 被引量:5
  • 2魏利.关于极大单调算子扰动的注[J].河北师范大学学报(自然科学版),1997,21(1):11-13. 被引量:3
  • 3BREZIS H.Integrales convexes dans les espaces de sobolev [J].Israel J Math,1972,13:1-23. 被引量:1
  • 4PASCALI D.Nonlinear Mappings of Monotone Type [M].Romania:[s.n.],1978. 被引量:1
  • 5郭大均.非线性泛函分析[M].济南:山东科学技术出版社,1985.. 被引量:44
  • 6Wei Li, He Zhen. The applications of sums of ranges of accretive operators to nonlinear equations involving the P-Laplacian operator[J]. Nonlinear analysis, 1995,24(2): 185-193. 被引量:1
  • 7Browder F E. Nonlinear operators and nonlinear equations of evolution in Banach spaces[J]. Proc Sympos Pure Math Amer Math Soc Prov R I, 1976,18(2):90-100. 被引量:1
  • 8Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces [M]. Netherlands: Noordhoff,Leyden, 1976.1-50. 被引量:1
  • 9Calvert B. Perturbation by Nemytskii operators of m-T-accretive operators in Lq, q(1. +oo)[J]. Rev Roum Math Pures et Appl, 1977, XXII(7): 883-906. 被引量:1
  • 10Calvert B D, Gupta C P. Nonlinear elliptic boundary value problems in L^P-spaces and sums of ranges of accretive operators[J]. Nonlinear Analysis, 1978, 2(1): 1-26. 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部