摘要
受非线性增生映射值域的扰动定理的启发,研究了非线性边值问题(@)在Lp(Ω),1<P<+∞中解的存在性.其中f∈Lp(Ω),1<p<+∞给定,g:Ω×R→R满足Caratheodory条件.本文把Gupta和Hess所研究的非线性议程加以推广,即在议程中增加了这一项,并把解的存在性的讨论由L2(Ω)窨推广到LP(Ω),1<p<+∞空间中。
This paper. stimulated by the perturbation results on sums of ranges of nonlinear accretive operators, studies the abstract results on the existence of a solution u∈Lp (Ω) under some conditions of thenonlinear boundary value problem:wheref∈Lp(Ω),1<p<+∞is given, g:Ω×R→R satisfies Caratheodory's conditions. Our results areextensions of Gupta and Hess in the sense that we insert into equation (@) and discuss equation(@) in more general space Lp(Ω), 1<p<+∞instead of L2(Ω).
出处
《应用泛函分析学报》
CSCD
2000年第1期46-57,共12页
Acta Analysis Functionalis Applicata
基金
河北省自然科学基金!19706