期刊文献+

Weighted Marginal Fisher Analysis with Spatially Smooth for aircraft recognition

Weighted Marginal Fisher Analysis with Spatially Smooth for aircraft recognition
原文传递
导出
摘要 Due to limitations to extract invariant features for recognition when the aircraft presents various poses and lacks enough samples for training, a novel algorithm called Weighted Marginal Fisher Analysis with Spatially Smooth (WMFA-SS) for extracting invariant features in aircraft rec- ognition is proposed. According to the Graph Embedding (GE) framework, Heat Kernel function is firstly introduced to characterize the interclass separability when choosing the weights of penalty graph. Furthermore, Laplacian penalty is applied to constraining the coefficients to be spatially smooth in this algorithm. Laplacian penalty is able to incorporate the prior information that neigh- boring pixels are correlated. Besides, using a Laplacian penalty can also avoid the singularity of Laplacian matrix of intrinsic graph. Once compact representations of the images are obtained, it can be considered as invariant features and then be performed in classification to recognize different patterns of aircraft. Real aircraft recognition experiments show the superiority of our proposed WMFA-SS in comparison to other GE algorithms and the current aircraft recognition algorithm; the accuracy rate of our proposed method is 90.00% for dataset BH-AIR1.0 and 99.25% for dataset BH-AIR2.0. Due to limitations to extract invariant features for recognition when the aircraft presents various poses and lacks enough samples for training, a novel algorithm called Weighted Marginal Fisher Analysis with Spatially Smooth (WMFA-SS) for extracting invariant features in aircraft rec- ognition is proposed. According to the Graph Embedding (GE) framework, Heat Kernel function is firstly introduced to characterize the interclass separability when choosing the weights of penalty graph. Furthermore, Laplacian penalty is applied to constraining the coefficients to be spatially smooth in this algorithm. Laplacian penalty is able to incorporate the prior information that neigh- boring pixels are correlated. Besides, using a Laplacian penalty can also avoid the singularity of Laplacian matrix of intrinsic graph. Once compact representations of the images are obtained, it can be considered as invariant features and then be performed in classification to recognize different patterns of aircraft. Real aircraft recognition experiments show the superiority of our proposed WMFA-SS in comparison to other GE algorithms and the current aircraft recognition algorithm; the accuracy rate of our proposed method is 90.00% for dataset BH-AIR1.0 and 99.25% for dataset BH-AIR2.0.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第1期110-116,共7页 中国航空学报(英文版)
基金 co-supported by the National Key Scientific Instrument and Equipment Development Project (No.2012YQ140032)
关键词 Aircraft dataset Aircraft recognition Graph Embedding Invariant feature Laplacian operator Subspace learning Aircraft dataset Aircraft recognition Graph Embedding Invariant feature Laplacian operator Subspace learning
  • 相关文献

参考文献2

二级参考文献24

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部