期刊文献+

不同光照下基于自适应图像阈值的车道保持系统设计 被引量:10

Lane Tracking System Based on Adaptive Image Threshold under Different Illumination
下载PDF
导出
摘要 为兼顾智能车辆车道识别的鲁棒性和实时性,在摄像机采集的平面车道图像中确定纵横两个方向的二维约束,通过对该二维约束下的局部图像区域进行车道检测,以实现路面车道线的识别。为提高在不同光照条件下车道识别的鲁棒性,提出基于自适应图像阈值的车道识别方法。该方法以车道图像二值化后得到的车道横向宽度为依据,判定之前的二值化阈值是否合适,并经过调整得到适应各种光照的有效阈值。在此基础上进行车道保持系统设计及道路试验。其结果表明,提出的车道识别和跟踪方法能够较好地适应外界光照的变化,其车道识别和跟踪具有较好的实时性和鲁棒性。 In order to obtain both robustness and real by detecting several local areas of the whole image timing for lane recognition of intelligent vehicle, lane recognition is achieved constrained within two dimensions. An adaptive image threshold method is adopted to better recognize the lane under different illumination. It uses the recognized lane width to determine whether the previously-used recognizing threshold is suitable or not, and then the threshold could be adjusted to a suitable value to recognize the path accurately. The lane recognition and tracking system is designed. And the experiments show the intelligent vehicle can recognize and track the lane accurately and robustly under different illumination.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第2期146-152,共7页 Journal of Mechanical Engineering
基金 安徽高校省级自然科学研究(KJ2013B074) 安徽科技学院人才引进(稳定)(ZRC2011302)资助项目
关键词 智能车辆 车道保持 二维约束 自适应图像阈值 intelligent vehicle lane tracking two-dimension constraints adaptive image threshold
  • 相关文献

参考文献10

二级参考文献73

共引文献209

同被引文献70

  • 1陈效华,孙锐,陈军.基于FPGA的车道偏离报警系统关键技术研究[J].汽车工程,2013,35(11):986-990. 被引量:3
  • 2高晓杰,余卓平,张立军,蒋励.机械式前轮主动转向系统的原理与应用[J].汽车工程,2006,28(10):918-921. 被引量:25
  • 3Kadakkal V, Cook G. Use of a Preview Control Scheme with Knowl- edge of Future Trajectory Information for a Lane Tracking Controller on a Wheeled Mobile Robot [ C ]. 34th IEEE Annum Conference on Industrial Electronics ,2008 : 1692-1697. 被引量:1
  • 4Kim Z W. Robust Lane Detection and Tracking in Challenging Sce- narios[ J ]. 1EEE Transactions on Intelligent Transportation Sys- tem,2008,9( 1 ) : 16-26. 被引量:1
  • 5Fierro R, Lewis F L. Control of a Nonholonomic Mobile Robot U- sing Neural Networks [ J ]. IEEE Transactions on Neural Networks, 1998,9(4) :589-600. 被引量:1
  • 6Tangrttamsub S, Tsuboyama M, Kawewong A, et al. Mobile Robot Vision-based Navigation Using Self-organizing and Incremental Neural Networks [ C ]. Proceeding of International Conference on Neural Networks, Atlanta,2009:3094-3101. 被引量:1
  • 7Choi H C, Park J M, Choi W S, bust Lane Tracking and Forward et a|. Vision-Based Fusion of Ro- Vehicle Detection in a Real Driv- ing Environment[J]. International Journal of Automotive Technol ogy,2012,13 (4) :653-669. 被引量:1
  • 8RAJAMANI R. Vehicle dynamics and control. second edition[M]. USA: Springer, 2012: 201-240. 被引量:1
  • 9GUO K, CHENG Y, DING H. Driver model based on the preview optimal artificial neural network[C]∥Proceedings of the International Symposium on Advanced Vehicle Control. (AVEC ’02). Hiroshima, Japan: AVEC, 2002: 677-682. 被引量:1
  • 10LI B, YU F. Desing of a vehicle lateral stability control system via a fuzzy logic control approach[J]. Proceedillgs of the Institution of Mechanical Engineering, Part D. Journal of Automobile Engineering, 2010, 224(3): 313-326. 被引量:1

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部