期刊文献+

基于具有自适应与自学习能力的粒子群优化算法的车间调度算法 被引量:3

Adaptive and Self-learning PSO-Based Algorithm for Job Shop Scheduling Problem
下载PDF
导出
摘要 针对车间调度问题,提出一种新的基于粒子群优化和模拟退火的混合算法.该算法将问题规模作为启发式信息,通过对模拟退火算法引入新的邻域搜索机制——多粒度搜索,并加入选择优化和淘汰更新机制,提高了算法的自适应性和自学习能力,降低了粒子群算法陷入局部最优的可能性.实验结果表明,该算法在最优解的求解能力上优于其他算法. For j ob shop scheduling problem,we proposed a new particle swarm optimization and simulated annealing based algorithm,in which we made use of the information of the problem itself, added a new neighborhood search strategy (multi-granularity)in simulated annealing search,and introduced selection optimization and updating parts into the original particle swarm optimization algorithm.All the adjustments make our algorithm more adaptive,improve the ability of self-learning,and reduce the possibility of trapping in the local best. Our algorithm was tested on different scale benchmarks and compared with recently proposed algorithms.The experimental results show that our algorithm is more adaptive and efficient than the other three algorithms.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第1期93-97,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60873148 60973089 61170314 61272208) 吉林省科技发展计划项目(批准号:20071106)
关键词 车间调度 粒子群优化 自适应 自学习 j ob shop scheduling particle swarm optimization adaptive self-learning
  • 相关文献

参考文献15

  • 1Nowicki E,Smutnicki C. An Advanced Tabu Search Algorithm for the Job Shop Problem[J].{H}JOURNAL OF SCHEDULING,2005,(02):145-159. 被引量:1
  • 2Goncalves J F,Mendes J J D M,Resende M G C. A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem[J].{H}European Journal of Operational Research,2005,(01):77-95. 被引量:1
  • 3Suresh R K,Mohanasundaram K M. Pareto Archived Simulated Annealing for Job Shop Scheduling with Multiple Objectives[J].The International Journal of Advanced Manufacturing Technology,2005,(1/2):184-196. 被引量:1
  • 4Udomsakdigool A,Kachitvichyanukul V. Multiple Colony Ant Algorithm for Job-Shop Scheduling Problem[J].{H}International Journal of Production Research,2008,(05):4155-4175. 被引量:1
  • 5GE Hong-wei,SUN Liang,LIANG Yan-chun. An Effective PSO and AIS-Based Hybrid Intelligent Algorithm for Job-Shop Scheduling[J].IEEE Transactions on Systems Man and Cyberrnetics Part A:Systems and Humans,2008,(02):358-368. 被引量:1
  • 6LIN Tsung-lieh,HORNG Shi-jinn,KAO Tzong-wann. An Efficient Job-Shop Scheduling Algorithm Based on Particle Swarm Optimization[J].{H}Expert systems with application,2010,(03):2629-2636. 被引量:1
  • 7Yamada T. Studies on Metaheuristics for Jobshop and Flowshop Scheduling Problems[D].Kyoto:Kyoto University,2003. 被引量:1
  • 8YANG Sheng-xiang,WANG Ding-wei,CHAI Tian-you. An Improved Constraint Satisfaction Adaptive Neural Network for Job-Shop Scheduling[J].{H}JOURNAL OF SCHEDULING,2010,(01):17-38. 被引量:1
  • 9Kirkpatrick S,Gelatt C D,Vecchi M P. Optimization by Simulated Annealing[J].Science New Series,1983.671-680. 被引量:1
  • 10Hansen P,Mladenovic N,Perez-Britos D. Variable Neighborhood Decomposition Search[J].{H}JOURNAL OF HEURISTICS,2001,(04):335-350. 被引量:1

二级参考文献8

  • 1刘杰,金弟,杜惠君,刘大有.一种新的混合特征选择方法RRK[J].吉林大学学报(工学版),2009,39(2):419-423. 被引量:7
  • 2Guzella T S, Caminhas W M. A review of machine learning approaches to spam filtering[J]. Expert Systems with Applications, 2009, 36 (7): 10206- 10222. 被引量:1
  • 3Blanzieri E,Bryl A. A survey of learning-based tech- niques of email spare filtering[J]. Artificial Intelli- gence Review, 2008,29 ( 1 ) : 63-92. 被引量:1
  • 4Zheleva E,Kolcz A,Getoor L. Trusting spam report- ers:a reporter based reputation system for email fil-tering[J]. Acre Transactions on Information Sys- tems,2009 ,27 (1) :1-37. 被引量:1
  • 5Chen J N, Huang H K. Feature selection for text classification with naive Bayes[J]. Expert Systems with Applications,2009,36(3) :5432-5435. 被引量:1
  • 6Bajpai P, Singh S N. Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market[J]. IEEE Transactions on Power Sys- tems,2007,22(4) :2152-2160. 被引量:1
  • 7Niknam T. A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non- smooth and non-convex economic dispateh problem [J]. Applied Energy, 2010,87 ( 1 ) : 327-339. 被引量:1
  • 8Niknam T, Mojarrad H D. A new fuzzy adaptive par- ticle swarm optimization for non-smooth economic dispatch[J]. Energy,2010,35(4) : 1764-1778. 被引量:1

共引文献6

同被引文献38

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部